metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_5x_beit_base_rms_00001_fold5
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.91
smids_5x_beit_base_rms_00001_fold5
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.9550
- Accuracy: 0.91
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.1871 | 1.0 | 375 | 0.3400 | 0.865 |
0.1042 | 2.0 | 750 | 0.2834 | 0.9017 |
0.1083 | 3.0 | 1125 | 0.3546 | 0.9033 |
0.0201 | 4.0 | 1500 | 0.3961 | 0.9133 |
0.0166 | 5.0 | 1875 | 0.6199 | 0.9083 |
0.0246 | 6.0 | 2250 | 0.6057 | 0.8967 |
0.0224 | 7.0 | 2625 | 0.7547 | 0.9117 |
0.0003 | 8.0 | 3000 | 0.7052 | 0.9133 |
0.0111 | 9.0 | 3375 | 0.7830 | 0.8983 |
0.0518 | 10.0 | 3750 | 0.8521 | 0.8967 |
0.02 | 11.0 | 4125 | 0.9299 | 0.8933 |
0.0138 | 12.0 | 4500 | 0.9525 | 0.8983 |
0.0001 | 13.0 | 4875 | 0.8824 | 0.9067 |
0.013 | 14.0 | 5250 | 0.9828 | 0.8833 |
0.0349 | 15.0 | 5625 | 0.8057 | 0.9033 |
0.0008 | 16.0 | 6000 | 0.9444 | 0.8983 |
0.0016 | 17.0 | 6375 | 0.8486 | 0.905 |
0.0093 | 18.0 | 6750 | 0.8485 | 0.9083 |
0.0057 | 19.0 | 7125 | 0.8351 | 0.895 |
0.0146 | 20.0 | 7500 | 0.8068 | 0.915 |
0.0088 | 21.0 | 7875 | 0.8372 | 0.9117 |
0.0074 | 22.0 | 8250 | 0.8780 | 0.905 |
0.0068 | 23.0 | 8625 | 0.9227 | 0.9067 |
0.0 | 24.0 | 9000 | 0.8408 | 0.9067 |
0.0 | 25.0 | 9375 | 0.8878 | 0.9067 |
0.0001 | 26.0 | 9750 | 0.6996 | 0.9217 |
0.0043 | 27.0 | 10125 | 0.7960 | 0.915 |
0.0021 | 28.0 | 10500 | 0.8288 | 0.91 |
0.002 | 29.0 | 10875 | 0.8059 | 0.9133 |
0.0055 | 30.0 | 11250 | 0.8992 | 0.9117 |
0.0001 | 31.0 | 11625 | 0.9502 | 0.9083 |
0.0001 | 32.0 | 12000 | 1.0009 | 0.9067 |
0.0047 | 33.0 | 12375 | 0.9429 | 0.91 |
0.0 | 34.0 | 12750 | 0.9564 | 0.905 |
0.0 | 35.0 | 13125 | 0.9119 | 0.9217 |
0.0 | 36.0 | 13500 | 1.0028 | 0.9033 |
0.0 | 37.0 | 13875 | 0.9150 | 0.91 |
0.0054 | 38.0 | 14250 | 0.9393 | 0.91 |
0.0 | 39.0 | 14625 | 1.0004 | 0.9067 |
0.0 | 40.0 | 15000 | 0.9733 | 0.9083 |
0.0001 | 41.0 | 15375 | 0.9774 | 0.9067 |
0.0 | 42.0 | 15750 | 0.9404 | 0.9133 |
0.0 | 43.0 | 16125 | 0.9724 | 0.9117 |
0.0 | 44.0 | 16500 | 0.9389 | 0.915 |
0.0 | 45.0 | 16875 | 0.9342 | 0.9167 |
0.0 | 46.0 | 17250 | 0.9815 | 0.9117 |
0.0058 | 47.0 | 17625 | 0.9724 | 0.9067 |
0.0 | 48.0 | 18000 | 0.9650 | 0.9067 |
0.0 | 49.0 | 18375 | 0.9572 | 0.9083 |
0.0012 | 50.0 | 18750 | 0.9550 | 0.91 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2