metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_5x_beit_base_rms_00001_fold1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8964941569282137
smids_5x_beit_base_rms_00001_fold1
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.0277
- Accuracy: 0.8965
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.169 | 1.0 | 376 | 0.2845 | 0.8848 |
0.1527 | 2.0 | 752 | 0.2709 | 0.9132 |
0.1446 | 3.0 | 1128 | 0.3421 | 0.8998 |
0.0485 | 4.0 | 1504 | 0.4474 | 0.9065 |
0.0159 | 5.0 | 1880 | 0.4847 | 0.8965 |
0.0162 | 6.0 | 2256 | 0.6046 | 0.8982 |
0.0753 | 7.0 | 2632 | 0.6419 | 0.8898 |
0.0455 | 8.0 | 3008 | 0.7218 | 0.8965 |
0.0437 | 9.0 | 3384 | 0.8405 | 0.8815 |
0.007 | 10.0 | 3760 | 0.7349 | 0.9015 |
0.0254 | 11.0 | 4136 | 0.8461 | 0.8915 |
0.0214 | 12.0 | 4512 | 0.7638 | 0.8898 |
0.0283 | 13.0 | 4888 | 0.8735 | 0.8948 |
0.0331 | 14.0 | 5264 | 0.8577 | 0.8932 |
0.0029 | 15.0 | 5640 | 0.9013 | 0.8982 |
0.0041 | 16.0 | 6016 | 0.9992 | 0.8698 |
0.0007 | 17.0 | 6392 | 0.9147 | 0.8865 |
0.0019 | 18.0 | 6768 | 0.9339 | 0.8915 |
0.0002 | 19.0 | 7144 | 0.8625 | 0.8982 |
0.0341 | 20.0 | 7520 | 0.9287 | 0.8815 |
0.0 | 21.0 | 7896 | 1.0011 | 0.8831 |
0.0 | 22.0 | 8272 | 0.8805 | 0.8948 |
0.0028 | 23.0 | 8648 | 0.9347 | 0.8965 |
0.0001 | 24.0 | 9024 | 0.9930 | 0.8965 |
0.001 | 25.0 | 9400 | 1.0054 | 0.8982 |
0.029 | 26.0 | 9776 | 0.8994 | 0.8932 |
0.0028 | 27.0 | 10152 | 0.9209 | 0.8865 |
0.0009 | 28.0 | 10528 | 0.9409 | 0.8998 |
0.0018 | 29.0 | 10904 | 1.0441 | 0.8848 |
0.0163 | 30.0 | 11280 | 0.9017 | 0.9032 |
0.0 | 31.0 | 11656 | 0.8554 | 0.9015 |
0.0 | 32.0 | 12032 | 0.8702 | 0.9048 |
0.0001 | 33.0 | 12408 | 0.9551 | 0.8965 |
0.0 | 34.0 | 12784 | 0.9265 | 0.8982 |
0.0004 | 35.0 | 13160 | 1.0253 | 0.8865 |
0.0044 | 36.0 | 13536 | 0.9098 | 0.8948 |
0.0003 | 37.0 | 13912 | 0.9290 | 0.9032 |
0.0 | 38.0 | 14288 | 1.0072 | 0.8948 |
0.0 | 39.0 | 14664 | 1.0677 | 0.8948 |
0.0 | 40.0 | 15040 | 1.0064 | 0.8982 |
0.0 | 41.0 | 15416 | 0.9891 | 0.8982 |
0.0 | 42.0 | 15792 | 1.0628 | 0.8948 |
0.0 | 43.0 | 16168 | 1.0396 | 0.8915 |
0.0 | 44.0 | 16544 | 1.0033 | 0.8982 |
0.0 | 45.0 | 16920 | 1.0214 | 0.8998 |
0.0033 | 46.0 | 17296 | 1.0498 | 0.8898 |
0.0 | 47.0 | 17672 | 1.0375 | 0.8932 |
0.0 | 48.0 | 18048 | 1.0305 | 0.8898 |
0.0 | 49.0 | 18424 | 1.0285 | 0.8948 |
0.0028 | 50.0 | 18800 | 1.0277 | 0.8965 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2