hkivancoral's picture
End of training
b26f9f2
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_5x_beit_base_rms_00001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8964941569282137

smids_5x_beit_base_rms_00001_fold1

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0277
  • Accuracy: 0.8965

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.169 1.0 376 0.2845 0.8848
0.1527 2.0 752 0.2709 0.9132
0.1446 3.0 1128 0.3421 0.8998
0.0485 4.0 1504 0.4474 0.9065
0.0159 5.0 1880 0.4847 0.8965
0.0162 6.0 2256 0.6046 0.8982
0.0753 7.0 2632 0.6419 0.8898
0.0455 8.0 3008 0.7218 0.8965
0.0437 9.0 3384 0.8405 0.8815
0.007 10.0 3760 0.7349 0.9015
0.0254 11.0 4136 0.8461 0.8915
0.0214 12.0 4512 0.7638 0.8898
0.0283 13.0 4888 0.8735 0.8948
0.0331 14.0 5264 0.8577 0.8932
0.0029 15.0 5640 0.9013 0.8982
0.0041 16.0 6016 0.9992 0.8698
0.0007 17.0 6392 0.9147 0.8865
0.0019 18.0 6768 0.9339 0.8915
0.0002 19.0 7144 0.8625 0.8982
0.0341 20.0 7520 0.9287 0.8815
0.0 21.0 7896 1.0011 0.8831
0.0 22.0 8272 0.8805 0.8948
0.0028 23.0 8648 0.9347 0.8965
0.0001 24.0 9024 0.9930 0.8965
0.001 25.0 9400 1.0054 0.8982
0.029 26.0 9776 0.8994 0.8932
0.0028 27.0 10152 0.9209 0.8865
0.0009 28.0 10528 0.9409 0.8998
0.0018 29.0 10904 1.0441 0.8848
0.0163 30.0 11280 0.9017 0.9032
0.0 31.0 11656 0.8554 0.9015
0.0 32.0 12032 0.8702 0.9048
0.0001 33.0 12408 0.9551 0.8965
0.0 34.0 12784 0.9265 0.8982
0.0004 35.0 13160 1.0253 0.8865
0.0044 36.0 13536 0.9098 0.8948
0.0003 37.0 13912 0.9290 0.9032
0.0 38.0 14288 1.0072 0.8948
0.0 39.0 14664 1.0677 0.8948
0.0 40.0 15040 1.0064 0.8982
0.0 41.0 15416 0.9891 0.8982
0.0 42.0 15792 1.0628 0.8948
0.0 43.0 16168 1.0396 0.8915
0.0 44.0 16544 1.0033 0.8982
0.0 45.0 16920 1.0214 0.8998
0.0033 46.0 17296 1.0498 0.8898
0.0 47.0 17672 1.0375 0.8932
0.0 48.0 18048 1.0305 0.8898
0.0 49.0 18424 1.0285 0.8948
0.0028 50.0 18800 1.0277 0.8965

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2