hkivancoral's picture
End of training
088a81b
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_small_rms_0001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7483333333333333

smids_1x_deit_small_rms_0001_fold5

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2122
  • Accuracy: 0.7483

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0524 1.0 75 0.9597 0.445
1.1247 2.0 150 1.1111 0.3367
0.979 3.0 225 0.9077 0.5
0.8898 4.0 300 0.8740 0.52
0.8714 5.0 375 0.9443 0.4433
0.8755 6.0 450 0.7908 0.5917
0.8257 7.0 525 0.8028 0.5817
0.7602 8.0 600 0.8435 0.605
0.7994 9.0 675 0.7977 0.6117
0.7424 10.0 750 0.7850 0.6117
0.8101 11.0 825 0.7616 0.6233
0.7712 12.0 900 0.7668 0.6367
0.7209 13.0 975 0.8101 0.62
0.7215 14.0 1050 0.7936 0.62
0.7097 15.0 1125 0.7953 0.61
0.7072 16.0 1200 0.7924 0.6317
0.7074 17.0 1275 0.7452 0.6667
0.6856 18.0 1350 0.7477 0.6717
0.6768 19.0 1425 0.7216 0.6783
0.6919 20.0 1500 0.7445 0.68
0.6145 21.0 1575 0.7497 0.6533
0.5852 22.0 1650 0.7462 0.7083
0.625 23.0 1725 0.7496 0.675
0.549 24.0 1800 0.7315 0.7067
0.5773 25.0 1875 0.7055 0.7033
0.5746 26.0 1950 0.6982 0.7283
0.5717 27.0 2025 0.7187 0.705
0.5927 28.0 2100 0.6996 0.7183
0.5713 29.0 2175 0.6989 0.7217
0.5709 30.0 2250 0.7204 0.7267
0.5164 31.0 2325 0.7778 0.705
0.5059 32.0 2400 0.7021 0.73
0.5725 33.0 2475 0.6873 0.735
0.4839 34.0 2550 0.6931 0.745
0.4617 35.0 2625 0.7517 0.75
0.4294 36.0 2700 0.8099 0.7533
0.3749 37.0 2775 0.7255 0.75
0.4163 38.0 2850 0.7476 0.7533
0.3565 39.0 2925 0.8354 0.735
0.382 40.0 3000 0.8201 0.7467
0.3261 41.0 3075 0.8167 0.7567
0.4372 42.0 3150 0.8428 0.7267
0.3484 43.0 3225 0.8996 0.74
0.3261 44.0 3300 0.9207 0.735
0.2963 45.0 3375 1.0220 0.7283
0.2143 46.0 3450 0.9860 0.755
0.2551 47.0 3525 1.1473 0.7333
0.1675 48.0 3600 1.1351 0.735
0.1431 49.0 3675 1.1685 0.75
0.1393 50.0 3750 1.2122 0.7483

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0