hkivancoral's picture
End of training
eb9862f
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_small_rms_00001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.88

smids_1x_deit_small_rms_00001_fold5

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9281
  • Accuracy: 0.88

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3852 1.0 75 0.3081 0.87
0.2965 2.0 150 0.3016 0.8733
0.1467 3.0 225 0.3200 0.8783
0.1384 4.0 300 0.3262 0.8833
0.0702 5.0 375 0.3415 0.8817
0.0486 6.0 450 0.4818 0.8817
0.0342 7.0 525 0.4838 0.8817
0.0455 8.0 600 0.6047 0.8717
0.0096 9.0 675 0.5775 0.8817
0.028 10.0 750 0.6719 0.875
0.0419 11.0 825 0.6284 0.8833
0.0004 12.0 900 0.6384 0.8817
0.0259 13.0 975 0.6301 0.875
0.03 14.0 1050 0.6619 0.8733
0.0082 15.0 1125 0.8292 0.8667
0.0001 16.0 1200 0.7120 0.88
0.005 17.0 1275 0.7140 0.8867
0.028 18.0 1350 0.8747 0.865
0.0095 19.0 1425 0.8049 0.8767
0.0001 20.0 1500 0.7748 0.8767
0.0085 21.0 1575 0.7202 0.885
0.0152 22.0 1650 0.8388 0.875
0.0057 23.0 1725 0.8400 0.8733
0.0001 24.0 1800 0.8934 0.8717
0.0082 25.0 1875 0.8430 0.8783
0.0001 26.0 1950 0.8852 0.8783
0.008 27.0 2025 0.8664 0.8767
0.0113 28.0 2100 0.8872 0.88
0.0078 29.0 2175 0.8576 0.8817
0.0049 30.0 2250 0.8872 0.88
0.0 31.0 2325 0.9217 0.8733
0.0 32.0 2400 0.8681 0.8833
0.0081 33.0 2475 0.9201 0.8783
0.0 34.0 2550 0.9023 0.8767
0.0058 35.0 2625 0.9043 0.8767
0.0 36.0 2700 0.9027 0.88
0.0029 37.0 2775 0.9082 0.88
0.0 38.0 2850 0.9260 0.8767
0.0 39.0 2925 0.9311 0.8783
0.0 40.0 3000 0.9195 0.8767
0.0028 41.0 3075 0.9229 0.8767
0.0 42.0 3150 0.9218 0.8783
0.0075 43.0 3225 0.9281 0.8767
0.0 44.0 3300 0.9291 0.8767
0.0025 45.0 3375 0.9268 0.8783
0.0 46.0 3450 0.9285 0.88
0.0049 47.0 3525 0.9282 0.88
0.0048 48.0 3600 0.9283 0.88
0.0 49.0 3675 0.9284 0.88
0.0043 50.0 3750 0.9281 0.88

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0