hkivancoral's picture
End of training
74caaa8
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_small_rms_00001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.86

smids_1x_deit_small_rms_00001_fold4

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2283
  • Accuracy: 0.86

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3693 1.0 75 0.4169 0.8367
0.25 2.0 150 0.3480 0.86
0.1826 3.0 225 0.3907 0.8517
0.103 4.0 300 0.4268 0.8533
0.0588 5.0 375 0.4745 0.8517
0.0211 6.0 450 0.5873 0.86
0.0762 7.0 525 0.6785 0.8567
0.0033 8.0 600 0.6768 0.8533
0.0377 9.0 675 0.7784 0.855
0.0107 10.0 750 0.8289 0.8467
0.0009 11.0 825 0.8979 0.845
0.0002 12.0 900 0.8647 0.8617
0.0003 13.0 975 0.8591 0.8583
0.0077 14.0 1050 0.9903 0.8483
0.0002 15.0 1125 0.9262 0.86
0.0075 16.0 1200 1.1297 0.8283
0.0005 17.0 1275 0.9421 0.86
0.0146 18.0 1350 0.8922 0.86
0.0001 19.0 1425 0.9244 0.8683
0.0001 20.0 1500 0.9926 0.8683
0.003 21.0 1575 0.9538 0.8633
0.0001 22.0 1650 0.9796 0.8633
0.0 23.0 1725 0.9957 0.865
0.0079 24.0 1800 0.9969 0.8667
0.0074 25.0 1875 1.0816 0.86
0.0 26.0 1950 1.1025 0.8617
0.0 27.0 2025 1.1525 0.8467
0.0057 28.0 2100 1.1210 0.855
0.0181 29.0 2175 1.1276 0.86
0.0 30.0 2250 1.1208 0.8617
0.0 31.0 2325 1.1193 0.865
0.0 32.0 2400 1.1408 0.8617
0.0 33.0 2475 1.1431 0.8633
0.0 34.0 2550 1.1491 0.86
0.0 35.0 2625 1.1589 0.8617
0.0 36.0 2700 1.1620 0.8617
0.0031 37.0 2775 1.1838 0.8633
0.0 38.0 2850 1.1840 0.8633
0.0 39.0 2925 1.1861 0.8617
0.0 40.0 3000 1.2058 0.8633
0.0028 41.0 3075 1.1981 0.865
0.0 42.0 3150 1.2026 0.8617
0.0 43.0 3225 1.2159 0.86
0.0 44.0 3300 1.2159 0.86
0.0 45.0 3375 1.2189 0.86
0.0 46.0 3450 1.2225 0.86
0.0 47.0 3525 1.2244 0.86
0.0 48.0 3600 1.2263 0.86
0.0 49.0 3675 1.2278 0.86
0.0 50.0 3750 1.2283 0.86

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0