metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_1x_deit_small_adamax_001_fold5
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.86
smids_1x_deit_small_adamax_001_fold5
This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.0002
- Accuracy: 0.86
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6434 | 1.0 | 75 | 0.5267 | 0.795 |
0.4681 | 2.0 | 150 | 0.4240 | 0.82 |
0.3802 | 3.0 | 225 | 0.4300 | 0.8317 |
0.3978 | 4.0 | 300 | 0.4417 | 0.815 |
0.2851 | 5.0 | 375 | 0.4444 | 0.82 |
0.1694 | 6.0 | 450 | 0.3647 | 0.87 |
0.1978 | 7.0 | 525 | 0.4075 | 0.85 |
0.3005 | 8.0 | 600 | 0.3919 | 0.8533 |
0.1464 | 9.0 | 675 | 0.5040 | 0.85 |
0.0679 | 10.0 | 750 | 0.4768 | 0.8683 |
0.1428 | 11.0 | 825 | 0.5770 | 0.8367 |
0.0515 | 12.0 | 900 | 0.7151 | 0.8483 |
0.0525 | 13.0 | 975 | 0.6841 | 0.8433 |
0.0836 | 14.0 | 1050 | 0.6721 | 0.8583 |
0.0701 | 15.0 | 1125 | 0.7481 | 0.835 |
0.0512 | 16.0 | 1200 | 0.7462 | 0.8383 |
0.0331 | 17.0 | 1275 | 0.6909 | 0.86 |
0.0421 | 18.0 | 1350 | 0.8979 | 0.855 |
0.0249 | 19.0 | 1425 | 0.6741 | 0.865 |
0.0085 | 20.0 | 1500 | 0.8222 | 0.8483 |
0.0231 | 21.0 | 1575 | 0.6427 | 0.87 |
0.0092 | 22.0 | 1650 | 0.8231 | 0.8533 |
0.015 | 23.0 | 1725 | 0.8772 | 0.8533 |
0.002 | 24.0 | 1800 | 0.7754 | 0.86 |
0.0148 | 25.0 | 1875 | 0.8250 | 0.8733 |
0.004 | 26.0 | 1950 | 0.8667 | 0.8717 |
0.0153 | 27.0 | 2025 | 0.8197 | 0.8717 |
0.0089 | 28.0 | 2100 | 0.9170 | 0.8617 |
0.007 | 29.0 | 2175 | 0.9333 | 0.8583 |
0.0035 | 30.0 | 2250 | 0.8964 | 0.8667 |
0.0 | 31.0 | 2325 | 0.9173 | 0.8567 |
0.0 | 32.0 | 2400 | 0.9057 | 0.8617 |
0.0063 | 33.0 | 2475 | 0.9409 | 0.8667 |
0.0 | 34.0 | 2550 | 0.9412 | 0.8583 |
0.005 | 35.0 | 2625 | 0.9293 | 0.865 |
0.0 | 36.0 | 2700 | 0.9399 | 0.865 |
0.004 | 37.0 | 2775 | 0.9622 | 0.8683 |
0.001 | 38.0 | 2850 | 0.9655 | 0.8583 |
0.0 | 39.0 | 2925 | 0.9962 | 0.855 |
0.0 | 40.0 | 3000 | 0.9897 | 0.8567 |
0.0034 | 41.0 | 3075 | 0.9959 | 0.855 |
0.0 | 42.0 | 3150 | 0.9928 | 0.86 |
0.0077 | 43.0 | 3225 | 0.9873 | 0.8617 |
0.0 | 44.0 | 3300 | 0.9978 | 0.8583 |
0.0025 | 45.0 | 3375 | 0.9949 | 0.8617 |
0.0 | 46.0 | 3450 | 0.9977 | 0.8567 |
0.006 | 47.0 | 3525 | 0.9987 | 0.8567 |
0.0055 | 48.0 | 3600 | 1.0022 | 0.855 |
0.0 | 49.0 | 3675 | 1.0012 | 0.8583 |
0.0043 | 50.0 | 3750 | 1.0002 | 0.86 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0