hkivancoral's picture
End of training
55dd414
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_small_adamax_001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.86

smids_1x_deit_small_adamax_001_fold5

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0002
  • Accuracy: 0.86

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6434 1.0 75 0.5267 0.795
0.4681 2.0 150 0.4240 0.82
0.3802 3.0 225 0.4300 0.8317
0.3978 4.0 300 0.4417 0.815
0.2851 5.0 375 0.4444 0.82
0.1694 6.0 450 0.3647 0.87
0.1978 7.0 525 0.4075 0.85
0.3005 8.0 600 0.3919 0.8533
0.1464 9.0 675 0.5040 0.85
0.0679 10.0 750 0.4768 0.8683
0.1428 11.0 825 0.5770 0.8367
0.0515 12.0 900 0.7151 0.8483
0.0525 13.0 975 0.6841 0.8433
0.0836 14.0 1050 0.6721 0.8583
0.0701 15.0 1125 0.7481 0.835
0.0512 16.0 1200 0.7462 0.8383
0.0331 17.0 1275 0.6909 0.86
0.0421 18.0 1350 0.8979 0.855
0.0249 19.0 1425 0.6741 0.865
0.0085 20.0 1500 0.8222 0.8483
0.0231 21.0 1575 0.6427 0.87
0.0092 22.0 1650 0.8231 0.8533
0.015 23.0 1725 0.8772 0.8533
0.002 24.0 1800 0.7754 0.86
0.0148 25.0 1875 0.8250 0.8733
0.004 26.0 1950 0.8667 0.8717
0.0153 27.0 2025 0.8197 0.8717
0.0089 28.0 2100 0.9170 0.8617
0.007 29.0 2175 0.9333 0.8583
0.0035 30.0 2250 0.8964 0.8667
0.0 31.0 2325 0.9173 0.8567
0.0 32.0 2400 0.9057 0.8617
0.0063 33.0 2475 0.9409 0.8667
0.0 34.0 2550 0.9412 0.8583
0.005 35.0 2625 0.9293 0.865
0.0 36.0 2700 0.9399 0.865
0.004 37.0 2775 0.9622 0.8683
0.001 38.0 2850 0.9655 0.8583
0.0 39.0 2925 0.9962 0.855
0.0 40.0 3000 0.9897 0.8567
0.0034 41.0 3075 0.9959 0.855
0.0 42.0 3150 0.9928 0.86
0.0077 43.0 3225 0.9873 0.8617
0.0 44.0 3300 0.9978 0.8583
0.0025 45.0 3375 0.9949 0.8617
0.0 46.0 3450 0.9977 0.8567
0.006 47.0 3525 0.9987 0.8567
0.0055 48.0 3600 1.0022 0.855
0.0 49.0 3675 1.0012 0.8583
0.0043 50.0 3750 1.0002 0.86

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0