metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_1x_deit_small_adamax_001_fold2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8801996672212978
smids_1x_deit_small_adamax_001_fold2
This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.9149
- Accuracy: 0.8802
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.543 | 1.0 | 75 | 0.5577 | 0.7404 |
0.4238 | 2.0 | 150 | 0.4831 | 0.8120 |
0.4445 | 3.0 | 225 | 0.4591 | 0.8270 |
0.3847 | 4.0 | 300 | 0.4713 | 0.8369 |
0.2952 | 5.0 | 375 | 0.3692 | 0.8469 |
0.2663 | 6.0 | 450 | 0.4477 | 0.8336 |
0.2425 | 7.0 | 525 | 0.4906 | 0.8502 |
0.1718 | 8.0 | 600 | 0.4129 | 0.8486 |
0.181 | 9.0 | 675 | 0.4664 | 0.8369 |
0.1507 | 10.0 | 750 | 0.5087 | 0.8586 |
0.054 | 11.0 | 825 | 0.5852 | 0.8586 |
0.0682 | 12.0 | 900 | 0.4416 | 0.8669 |
0.0775 | 13.0 | 975 | 0.5468 | 0.8519 |
0.055 | 14.0 | 1050 | 0.7735 | 0.8469 |
0.1251 | 15.0 | 1125 | 0.6731 | 0.8453 |
0.0456 | 16.0 | 1200 | 0.6293 | 0.8586 |
0.0062 | 17.0 | 1275 | 0.8660 | 0.8502 |
0.098 | 18.0 | 1350 | 0.7112 | 0.8502 |
0.0187 | 19.0 | 1425 | 0.7932 | 0.8602 |
0.0128 | 20.0 | 1500 | 0.8437 | 0.8519 |
0.0006 | 21.0 | 1575 | 0.9421 | 0.8686 |
0.0053 | 22.0 | 1650 | 0.7611 | 0.8735 |
0.0134 | 23.0 | 1725 | 0.8550 | 0.8735 |
0.0005 | 24.0 | 1800 | 0.9144 | 0.8835 |
0.0024 | 25.0 | 1875 | 0.8153 | 0.8719 |
0.0042 | 26.0 | 1950 | 0.9985 | 0.8636 |
0.004 | 27.0 | 2025 | 0.9075 | 0.8735 |
0.0044 | 28.0 | 2100 | 0.8893 | 0.8735 |
0.0063 | 29.0 | 2175 | 0.8699 | 0.8802 |
0.0032 | 30.0 | 2250 | 0.8845 | 0.8719 |
0.0061 | 31.0 | 2325 | 0.8727 | 0.8785 |
0.0 | 32.0 | 2400 | 0.9476 | 0.8702 |
0.0001 | 33.0 | 2475 | 0.9392 | 0.8686 |
0.0295 | 34.0 | 2550 | 0.8832 | 0.8702 |
0.0089 | 35.0 | 2625 | 0.9008 | 0.8719 |
0.0029 | 36.0 | 2700 | 0.8983 | 0.8785 |
0.003 | 37.0 | 2775 | 0.8653 | 0.8752 |
0.0001 | 38.0 | 2850 | 0.8770 | 0.8769 |
0.0019 | 39.0 | 2925 | 0.8968 | 0.8752 |
0.0 | 40.0 | 3000 | 0.9023 | 0.8785 |
0.0031 | 41.0 | 3075 | 0.9066 | 0.8785 |
0.0001 | 42.0 | 3150 | 0.9074 | 0.8785 |
0.0028 | 43.0 | 3225 | 0.9037 | 0.8785 |
0.003 | 44.0 | 3300 | 0.9128 | 0.8785 |
0.0 | 45.0 | 3375 | 0.9191 | 0.8785 |
0.0 | 46.0 | 3450 | 0.9118 | 0.8785 |
0.0026 | 47.0 | 3525 | 0.9156 | 0.8785 |
0.0 | 48.0 | 3600 | 0.9135 | 0.8785 |
0.0023 | 49.0 | 3675 | 0.9151 | 0.8802 |
0.0022 | 50.0 | 3750 | 0.9149 | 0.8802 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0