hkivancoral's picture
End of training
4ea7aeb
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_small_adamax_0001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8633333333333333

smids_1x_deit_small_adamax_0001_fold4

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0934
  • Accuracy: 0.8633

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4258 1.0 75 0.3716 0.85
0.2443 2.0 150 0.3887 0.8583
0.2372 3.0 225 0.4276 0.865
0.0872 4.0 300 0.5553 0.8433
0.0572 5.0 375 0.6684 0.8267
0.0647 6.0 450 0.6506 0.8467
0.0399 7.0 525 0.6617 0.8633
0.015 8.0 600 0.7633 0.8733
0.0316 9.0 675 0.8713 0.855
0.0011 10.0 750 0.7531 0.8717
0.0167 11.0 825 0.8491 0.855
0.0001 12.0 900 0.8412 0.8617
0.0003 13.0 975 0.9058 0.8633
0.0001 14.0 1050 0.9354 0.8733
0.0001 15.0 1125 0.9281 0.86
0.0001 16.0 1200 0.9960 0.8567
0.0001 17.0 1275 0.9791 0.86
0.0042 18.0 1350 0.9854 0.86
0.0 19.0 1425 0.9815 0.855
0.0 20.0 1500 0.9947 0.8617
0.0 21.0 1575 1.0042 0.865
0.0 22.0 1650 1.0148 0.865
0.0 23.0 1725 1.0209 0.8633
0.0029 24.0 1800 1.0235 0.8633
0.0033 25.0 1875 1.0287 0.8633
0.0 26.0 1950 1.0248 0.865
0.0 27.0 2025 1.0372 0.865
0.0027 28.0 2100 1.0367 0.8633
0.0041 29.0 2175 1.0380 0.8617
0.0 30.0 2250 1.0450 0.8633
0.0 31.0 2325 1.0524 0.865
0.0 32.0 2400 1.0579 0.865
0.0 33.0 2475 1.0579 0.8617
0.0 34.0 2550 1.0595 0.8617
0.0 35.0 2625 1.0612 0.8617
0.0 36.0 2700 1.0672 0.8633
0.0032 37.0 2775 1.0708 0.865
0.0 38.0 2850 1.0762 0.865
0.0 39.0 2925 1.0803 0.865
0.0 40.0 3000 1.0821 0.865
0.0027 41.0 3075 1.0818 0.8633
0.0 42.0 3150 1.0859 0.8633
0.0 43.0 3225 1.0874 0.8633
0.0 44.0 3300 1.0889 0.8633
0.0 45.0 3375 1.0897 0.8617
0.0 46.0 3450 1.0915 0.8633
0.0 47.0 3525 1.0919 0.8633
0.0 48.0 3600 1.0926 0.8633
0.0 49.0 3675 1.0933 0.8633
0.0 50.0 3750 1.0934 0.8633

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0