hkivancoral's picture
End of training
b83d2c4
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_small_adamax_0001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8768718801996672

smids_1x_deit_small_adamax_0001_fold2

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8040
  • Accuracy: 0.8769

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3172 1.0 75 0.3354 0.8636
0.1909 2.0 150 0.2950 0.8785
0.1696 3.0 225 0.3030 0.8902
0.1088 4.0 300 0.3512 0.8735
0.0828 5.0 375 0.3819 0.8719
0.0816 6.0 450 0.5235 0.8735
0.017 7.0 525 0.4625 0.8802
0.0096 8.0 600 0.6732 0.8536
0.0297 9.0 675 0.5099 0.8852
0.0129 10.0 750 0.6168 0.8819
0.0004 11.0 825 0.6434 0.8769
0.0003 12.0 900 0.6532 0.8752
0.0115 13.0 975 0.7781 0.8669
0.0025 14.0 1050 0.6839 0.8735
0.0031 15.0 1125 0.6481 0.8802
0.0037 16.0 1200 0.7018 0.8719
0.0001 17.0 1275 0.6843 0.8752
0.0057 18.0 1350 0.6963 0.8819
0.0001 19.0 1425 0.6873 0.8802
0.0036 20.0 1500 0.7059 0.8785
0.0001 21.0 1575 0.7123 0.8819
0.0 22.0 1650 0.7298 0.8785
0.0 23.0 1725 0.7182 0.8785
0.0 24.0 1800 0.7389 0.8752
0.0 25.0 1875 0.7283 0.8785
0.0 26.0 1950 0.7283 0.8802
0.0038 27.0 2025 0.7334 0.8819
0.0034 28.0 2100 0.7554 0.8735
0.0022 29.0 2175 0.7526 0.8752
0.0035 30.0 2250 0.7536 0.8769
0.0026 31.0 2325 0.7690 0.8719
0.0 32.0 2400 0.7598 0.8769
0.0 33.0 2475 0.7644 0.8752
0.0 34.0 2550 0.7770 0.8769
0.0081 35.0 2625 0.7696 0.8735
0.0 36.0 2700 0.7747 0.8735
0.0 37.0 2775 0.7776 0.8735
0.0 38.0 2850 0.7800 0.8735
0.0022 39.0 2925 0.7797 0.8735
0.0 40.0 3000 0.7884 0.8752
0.0028 41.0 3075 0.7926 0.8785
0.0 42.0 3150 0.7941 0.8769
0.0025 43.0 3225 0.7995 0.8752
0.0026 44.0 3300 0.7969 0.8752
0.0 45.0 3375 0.7932 0.8785
0.0 46.0 3450 0.8020 0.8752
0.0023 47.0 3525 0.8011 0.8702
0.0 48.0 3600 0.8043 0.8769
0.0022 49.0 3675 0.8040 0.8769
0.0022 50.0 3750 0.8040 0.8769

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0