hkivancoral's picture
End of training
176b376
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_small_adamax_00001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.86

smids_1x_deit_small_adamax_00001_fold4

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9148
  • Accuracy: 0.86

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5803 1.0 75 0.4968 0.8167
0.4066 2.0 150 0.3965 0.8517
0.3494 3.0 225 0.3679 0.8583
0.257 4.0 300 0.3627 0.8583
0.1968 5.0 375 0.3612 0.8567
0.1309 6.0 450 0.3609 0.865
0.1744 7.0 525 0.3526 0.8667
0.1066 8.0 600 0.3650 0.8733
0.0701 9.0 675 0.3803 0.87
0.058 10.0 750 0.3887 0.8683
0.0585 11.0 825 0.4227 0.8667
0.0507 12.0 900 0.4565 0.8667
0.0443 13.0 975 0.4751 0.8667
0.023 14.0 1050 0.5029 0.875
0.0067 15.0 1125 0.5522 0.8667
0.0046 16.0 1200 0.5758 0.8683
0.0072 17.0 1275 0.6012 0.8667
0.0186 18.0 1350 0.6185 0.8667
0.0049 19.0 1425 0.6452 0.8633
0.0012 20.0 1500 0.6704 0.8633
0.0009 21.0 1575 0.6922 0.8633
0.0009 22.0 1650 0.7205 0.8617
0.0007 23.0 1725 0.7357 0.8617
0.0194 24.0 1800 0.7622 0.86
0.0038 25.0 1875 0.7720 0.8583
0.0005 26.0 1950 0.7827 0.86
0.0003 27.0 2025 0.7974 0.8583
0.0054 28.0 2100 0.8004 0.8583
0.019 29.0 2175 0.8026 0.8633
0.0003 30.0 2250 0.8285 0.86
0.0002 31.0 2325 0.8245 0.8617
0.0002 32.0 2400 0.8349 0.86
0.0002 33.0 2475 0.8577 0.8617
0.0002 34.0 2550 0.8568 0.86
0.0002 35.0 2625 0.8651 0.8583
0.0002 36.0 2700 0.8693 0.86
0.0161 37.0 2775 0.8692 0.8633
0.0002 38.0 2850 0.8782 0.8583
0.0002 39.0 2925 0.8858 0.86
0.0001 40.0 3000 0.8886 0.8583
0.0154 41.0 3075 0.8970 0.86
0.0001 42.0 3150 0.8973 0.86
0.0001 43.0 3225 0.9034 0.86
0.0001 44.0 3300 0.9094 0.8617
0.0001 45.0 3375 0.9094 0.86
0.0001 46.0 3450 0.9101 0.86
0.0001 47.0 3525 0.9123 0.86
0.0001 48.0 3600 0.9135 0.86
0.0001 49.0 3675 0.9142 0.86
0.0001 50.0 3750 0.9148 0.86

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0