hkivancoral's picture
End of training
7713515
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_beit_base_adamax_001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7903494176372712

smids_1x_beit_base_adamax_001_fold2

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4865
  • Accuracy: 0.7903

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9007 1.0 75 0.8802 0.5191
0.7789 2.0 150 0.8973 0.5424
0.8219 3.0 225 0.7607 0.6406
0.7838 4.0 300 0.7358 0.6522
0.6602 5.0 375 0.6978 0.6672
0.7026 6.0 450 0.6685 0.6955
0.6394 7.0 525 0.7731 0.6589
0.6471 8.0 600 0.6234 0.7138
0.5881 9.0 675 0.6358 0.7205
0.5254 10.0 750 0.5746 0.7671
0.5153 11.0 825 0.5501 0.7704
0.5459 12.0 900 0.5543 0.7687
0.5526 13.0 975 0.5321 0.7737
0.5236 14.0 1050 0.5404 0.7937
0.4317 15.0 1125 0.6220 0.7604
0.4195 16.0 1200 0.5679 0.7854
0.3753 17.0 1275 0.6021 0.7687
0.3821 18.0 1350 0.5958 0.7854
0.3599 19.0 1425 0.6478 0.7837
0.2813 20.0 1500 0.6634 0.7671
0.224 21.0 1575 0.6766 0.7820
0.2635 22.0 1650 0.6781 0.7870
0.1832 23.0 1725 0.8041 0.7604
0.1751 24.0 1800 0.8069 0.7671
0.2421 25.0 1875 0.8820 0.7737
0.2115 26.0 1950 0.8838 0.7970
0.1798 27.0 2025 0.8954 0.7787
0.1341 28.0 2100 1.0505 0.7987
0.0669 29.0 2175 1.2992 0.7770
0.0892 30.0 2250 1.1168 0.7987
0.1159 31.0 2325 1.2066 0.7870
0.1289 32.0 2400 1.5859 0.7687
0.0687 33.0 2475 1.1777 0.7887
0.0226 34.0 2550 1.4423 0.7854
0.04 35.0 2625 1.4594 0.7870
0.0552 36.0 2700 1.3867 0.7820
0.0439 37.0 2775 1.4599 0.7720
0.0308 38.0 2850 1.4968 0.7903
0.0564 39.0 2925 1.5256 0.7953
0.0227 40.0 3000 1.4454 0.7953
0.0214 41.0 3075 1.3100 0.8087
0.0167 42.0 3150 1.4699 0.7987
0.0299 43.0 3225 1.4525 0.7903
0.0171 44.0 3300 1.3889 0.8053
0.011 45.0 3375 1.3819 0.7920
0.014 46.0 3450 1.5122 0.7903
0.0198 47.0 3525 1.4328 0.7920
0.0085 48.0 3600 1.5057 0.7920
0.0028 49.0 3675 1.4856 0.7903
0.0049 50.0 3750 1.4865 0.7903

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0