hkivancoral's picture
End of training
40129f5
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_beit_base_adamax_0001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.87

smids_1x_beit_base_adamax_0001_fold4

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1137
  • Accuracy: 0.87

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3443 1.0 75 0.4137 0.8583
0.258 2.0 150 0.4036 0.8483
0.1343 3.0 225 0.4810 0.8533
0.0768 4.0 300 0.5625 0.86
0.0189 5.0 375 0.6619 0.8617
0.0435 6.0 450 0.6679 0.875
0.0162 7.0 525 0.7878 0.86
0.0677 8.0 600 0.7298 0.875
0.0423 9.0 675 0.8935 0.855
0.0172 10.0 750 0.8762 0.8717
0.001 11.0 825 0.8614 0.865
0.0092 12.0 900 0.8623 0.8717
0.0016 13.0 975 0.8916 0.87
0.0049 14.0 1050 0.8926 0.88
0.0101 15.0 1125 0.9303 0.8683
0.0014 16.0 1200 0.9140 0.8783
0.001 17.0 1275 0.9424 0.8817
0.0053 18.0 1350 0.8806 0.8817
0.0012 19.0 1425 0.9188 0.8917
0.0147 20.0 1500 0.9436 0.8767
0.0025 21.0 1575 0.9848 0.88
0.0092 22.0 1650 0.9945 0.8817
0.0279 23.0 1725 1.0063 0.875
0.0046 24.0 1800 1.0539 0.8767
0.0043 25.0 1875 1.0635 0.8717
0.0045 26.0 1950 1.0471 0.8733
0.0 27.0 2025 1.0128 0.8783
0.0004 28.0 2100 1.0296 0.8717
0.0001 29.0 2175 1.0117 0.875
0.0001 30.0 2250 1.0423 0.87
0.0073 31.0 2325 1.0722 0.87
0.0 32.0 2400 1.0662 0.8767
0.0 33.0 2475 1.0416 0.8717
0.0 34.0 2550 1.0959 0.8717
0.0034 35.0 2625 1.1220 0.87
0.0 36.0 2700 1.1441 0.8733
0.0 37.0 2775 1.1553 0.8733
0.0022 38.0 2850 1.1117 0.8767
0.0 39.0 2925 1.1002 0.8717
0.0 40.0 3000 1.1022 0.8683
0.003 41.0 3075 1.1129 0.8667
0.008 42.0 3150 1.1397 0.8667
0.0 43.0 3225 1.1224 0.87
0.0 44.0 3300 1.1186 0.8717
0.0 45.0 3375 1.1121 0.87
0.0001 46.0 3450 1.1134 0.87
0.0 47.0 3525 1.1172 0.8683
0.0001 48.0 3600 1.1134 0.87
0.0023 49.0 3675 1.1139 0.87
0.0022 50.0 3750 1.1137 0.87

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0