hkivancoral's picture
End of training
d2e1c28
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_beit_base_adamax_0001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8901830282861897

smids_1x_beit_base_adamax_0001_fold2

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7859
  • Accuracy: 0.8902

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.357 1.0 75 0.2942 0.8852
0.196 2.0 150 0.2977 0.8769
0.1343 3.0 225 0.3454 0.8835
0.1165 4.0 300 0.4770 0.8586
0.0357 5.0 375 0.3863 0.8819
0.0407 6.0 450 0.5588 0.8785
0.0487 7.0 525 0.5410 0.8769
0.0422 8.0 600 0.5327 0.8835
0.0252 9.0 675 0.5671 0.8885
0.0072 10.0 750 0.5229 0.8852
0.0013 11.0 825 0.5397 0.9018
0.0233 12.0 900 0.6716 0.8902
0.0031 13.0 975 0.6232 0.8935
0.0106 14.0 1050 0.6722 0.8835
0.0052 15.0 1125 0.5873 0.9101
0.0117 16.0 1200 0.6014 0.8935
0.0056 17.0 1275 0.6190 0.8952
0.018 18.0 1350 0.6714 0.8902
0.0034 19.0 1425 0.6903 0.8918
0.0034 20.0 1500 0.6789 0.8902
0.0018 21.0 1575 0.7049 0.8852
0.0015 22.0 1650 0.8451 0.8802
0.0032 23.0 1725 0.6725 0.8885
0.0116 24.0 1800 0.7163 0.8952
0.0001 25.0 1875 0.6827 0.8918
0.004 26.0 1950 0.7084 0.8885
0.012 27.0 2025 0.7239 0.8968
0.0099 28.0 2100 0.7371 0.8918
0.0044 29.0 2175 0.7635 0.8869
0.0039 30.0 2250 0.7043 0.8918
0.0035 31.0 2325 0.7276 0.8902
0.0 32.0 2400 0.7428 0.8935
0.0 33.0 2475 0.7968 0.8852
0.014 34.0 2550 0.7553 0.8918
0.0048 35.0 2625 0.7230 0.8968
0.0029 36.0 2700 0.7674 0.8869
0.0 37.0 2775 0.7425 0.8918
0.0023 38.0 2850 0.7970 0.8902
0.0047 39.0 2925 0.8047 0.8869
0.0021 40.0 3000 0.7994 0.8885
0.0 41.0 3075 0.7761 0.8852
0.0025 42.0 3150 0.7890 0.8885
0.0046 43.0 3225 0.7889 0.8885
0.0 44.0 3300 0.7915 0.8852
0.0047 45.0 3375 0.7967 0.8885
0.0 46.0 3450 0.7946 0.8869
0.002 47.0 3525 0.7884 0.8885
0.0 48.0 3600 0.7873 0.8885
0.0 49.0 3675 0.7859 0.8902
0.0 50.0 3750 0.7859 0.8902

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0