hkivancoral's picture
End of training
2224fe3
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_beit_base_adamax_00001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.91

smids_1x_beit_base_adamax_00001_fold3

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5920
  • Accuracy: 0.91

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4085 1.0 75 0.3406 0.8733
0.3125 2.0 150 0.2766 0.905
0.272 3.0 225 0.2526 0.9117
0.2066 4.0 300 0.2426 0.9167
0.1315 5.0 375 0.2415 0.9233
0.1338 6.0 450 0.2667 0.9133
0.095 7.0 525 0.2679 0.9183
0.1144 8.0 600 0.2699 0.9267
0.038 9.0 675 0.2963 0.9183
0.0367 10.0 750 0.3153 0.925
0.0325 11.0 825 0.3378 0.92
0.0172 12.0 900 0.3441 0.9183
0.0285 13.0 975 0.3703 0.9217
0.0132 14.0 1050 0.3979 0.9117
0.0356 15.0 1125 0.3938 0.9167
0.0285 16.0 1200 0.4361 0.9117
0.0435 17.0 1275 0.4564 0.905
0.0412 18.0 1350 0.4606 0.905
0.0106 19.0 1425 0.4449 0.9133
0.0192 20.0 1500 0.4442 0.9167
0.0051 21.0 1575 0.4723 0.9117
0.0266 22.0 1650 0.5052 0.9117
0.0217 23.0 1725 0.4785 0.915
0.0019 24.0 1800 0.5058 0.9117
0.0069 25.0 1875 0.5124 0.91
0.0008 26.0 1950 0.5249 0.9117
0.0081 27.0 2025 0.5029 0.91
0.0213 28.0 2100 0.4919 0.9167
0.0025 29.0 2175 0.5055 0.9167
0.0366 30.0 2250 0.5226 0.9117
0.0192 31.0 2325 0.5652 0.91
0.0012 32.0 2400 0.5128 0.92
0.0191 33.0 2475 0.5580 0.9117
0.0168 34.0 2550 0.5615 0.905
0.0045 35.0 2625 0.5647 0.9133
0.0069 36.0 2700 0.5389 0.91
0.021 37.0 2775 0.5519 0.9133
0.0264 38.0 2850 0.5472 0.9117
0.0403 39.0 2925 0.5693 0.91
0.001 40.0 3000 0.5532 0.91
0.0004 41.0 3075 0.5673 0.9117
0.0344 42.0 3150 0.5624 0.9067
0.0221 43.0 3225 0.5673 0.91
0.0004 44.0 3300 0.5783 0.91
0.0156 45.0 3375 0.5833 0.9083
0.021 46.0 3450 0.5741 0.9117
0.0145 47.0 3525 0.5806 0.91
0.0049 48.0 3600 0.5891 0.91
0.0162 49.0 3675 0.5932 0.9083
0.0336 50.0 3750 0.5920 0.91

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0