hkivancoral's picture
End of training
193844f
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_conflu_deneme_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6341463414634146

hushem_conflu_deneme_fold5

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9630
  • Accuracy: 0.6341

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.4708 0.2439
1.7951 2.0 12 1.3099 0.2439
1.7951 3.0 18 1.1130 0.4146
1.2772 4.0 24 1.0471 0.7073
1.1124 5.0 30 1.2680 0.5366
1.1124 6.0 36 1.0908 0.5122
0.9481 7.0 42 1.5674 0.3902
0.9481 8.0 48 0.8947 0.6098
0.9653 9.0 54 1.1885 0.6098
0.639 10.0 60 0.9898 0.6585
0.639 11.0 66 1.7943 0.4634
0.5108 12.0 72 1.7088 0.5366
0.5108 13.0 78 1.6432 0.5610
0.1679 14.0 84 1.5598 0.5854
0.1286 15.0 90 2.1600 0.5854
0.1286 16.0 96 1.9849 0.5854
0.0501 17.0 102 1.9630 0.6341
0.0501 18.0 108 1.9630 0.6341
0.0271 19.0 114 1.9630 0.6341
0.0437 20.0 120 1.9630 0.6341

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1