hkivancoral's picture
End of training
f59560e
|
raw
history blame
4.82 kB
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_small_rms_0001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5333333333333333

hushem_5x_deit_small_rms_0001_fold1

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 4.0359
  • Accuracy: 0.5333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4419 1.0 27 1.3907 0.2444
1.4324 2.0 54 1.5348 0.4222
1.2448 3.0 81 1.2892 0.4444
1.2278 4.0 108 2.0615 0.4222
0.8744 5.0 135 1.2150 0.4
0.7002 6.0 162 1.5857 0.4
0.6664 7.0 189 1.1206 0.5111
0.5543 8.0 216 2.0902 0.4
0.4511 9.0 243 1.5223 0.5111
0.3889 10.0 270 2.0931 0.4667
0.3279 11.0 297 2.0153 0.5778
0.1636 12.0 324 3.2794 0.4444
0.1375 13.0 351 2.4712 0.5333
0.0773 14.0 378 2.1584 0.5333
0.0482 15.0 405 2.9775 0.4889
0.022 16.0 432 3.2342 0.5111
0.0125 17.0 459 3.3088 0.4889
0.0285 18.0 486 2.2599 0.5556
0.0004 19.0 513 3.3514 0.5111
0.0002 20.0 540 3.3934 0.5111
0.0001 21.0 567 3.4412 0.5111
0.0001 22.0 594 3.4801 0.5111
0.0001 23.0 621 3.5191 0.5111
0.0001 24.0 648 3.5572 0.5111
0.0001 25.0 675 3.5826 0.5333
0.0001 26.0 702 3.6119 0.5333
0.0001 27.0 729 3.6375 0.5333
0.0 28.0 756 3.6635 0.5333
0.0 29.0 783 3.6928 0.5333
0.0 30.0 810 3.7145 0.5333
0.0 31.0 837 3.7399 0.5333
0.0 32.0 864 3.7653 0.5333
0.0 33.0 891 3.7908 0.5333
0.0 34.0 918 3.8148 0.5333
0.0 35.0 945 3.8372 0.5333
0.0 36.0 972 3.8570 0.5333
0.0 37.0 999 3.8804 0.5333
0.0 38.0 1026 3.9044 0.5333
0.0 39.0 1053 3.9261 0.5333
0.0 40.0 1080 3.9442 0.5333
0.0 41.0 1107 3.9608 0.5333
0.0 42.0 1134 3.9774 0.5333
0.0 43.0 1161 3.9927 0.5333
0.0 44.0 1188 4.0067 0.5333
0.0 45.0 1215 4.0181 0.5333
0.0 46.0 1242 4.0275 0.5333
0.0 47.0 1269 4.0337 0.5333
0.0 48.0 1296 4.0359 0.5333
0.0 49.0 1323 4.0359 0.5333
0.0 50.0 1350 4.0359 0.5333

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0