hkivancoral's picture
End of training
3ea6664
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_small_adamax_001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7560975609756098

hushem_5x_deit_small_adamax_001_fold5

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9978
  • Accuracy: 0.7561

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4105 1.0 28 1.2401 0.4878
1.1305 2.0 56 1.2429 0.4634
0.8883 3.0 84 1.0090 0.5366
0.7137 4.0 112 0.7064 0.7317
0.4682 5.0 140 0.8445 0.7073
0.5286 6.0 168 1.1652 0.5854
0.3742 7.0 196 0.6789 0.8049
0.3573 8.0 224 0.7278 0.7317
0.272 9.0 252 0.8849 0.7561
0.1472 10.0 280 1.2627 0.6829
0.1837 11.0 308 1.1712 0.7317
0.0937 12.0 336 1.4720 0.7073
0.1467 13.0 364 1.7992 0.6585
0.1394 14.0 392 1.7959 0.5854
0.0985 15.0 420 1.4497 0.7317
0.0548 16.0 448 1.4327 0.7561
0.0354 17.0 476 1.5157 0.7317
0.0897 18.0 504 1.9967 0.7561
0.0783 19.0 532 1.8000 0.6829
0.0872 20.0 560 2.1630 0.7073
0.0467 21.0 588 1.7971 0.7073
0.0024 22.0 616 1.1519 0.8049
0.001 23.0 644 1.4688 0.7805
0.0101 24.0 672 1.1822 0.8293
0.005 25.0 700 1.2237 0.8293
0.0001 26.0 728 1.7234 0.7317
0.0025 27.0 756 1.4712 0.7561
0.0001 28.0 784 2.0676 0.7805
0.0003 29.0 812 2.0101 0.7317
0.0 30.0 840 2.0010 0.7561
0.0 31.0 868 1.9976 0.7561
0.0 32.0 896 1.9954 0.7561
0.0 33.0 924 1.9948 0.7561
0.0 34.0 952 1.9948 0.7561
0.0 35.0 980 1.9948 0.7561
0.0 36.0 1008 1.9942 0.7561
0.0 37.0 1036 1.9944 0.7561
0.0 38.0 1064 1.9949 0.7561
0.0 39.0 1092 1.9951 0.7561
0.0 40.0 1120 1.9957 0.7561
0.0 41.0 1148 1.9963 0.7561
0.0 42.0 1176 1.9964 0.7561
0.0 43.0 1204 1.9969 0.7561
0.0 44.0 1232 1.9973 0.7561
0.0 45.0 1260 1.9974 0.7561
0.0 46.0 1288 1.9976 0.7561
0.0 47.0 1316 1.9978 0.7561
0.0 48.0 1344 1.9978 0.7561
0.0 49.0 1372 1.9978 0.7561
0.0 50.0 1400 1.9978 0.7561

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0