hkivancoral's picture
End of training
a27cde0
|
raw
history blame
4.83 kB
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_small_adamax_00001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8048780487804879

hushem_5x_deit_small_adamax_00001_fold5

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6350
  • Accuracy: 0.8049

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.307 1.0 28 1.2048 0.4878
1.0055 2.0 56 1.0344 0.5366
0.7917 3.0 84 0.8814 0.6829
0.5612 4.0 112 0.7794 0.6585
0.4121 5.0 140 0.6731 0.7805
0.3453 6.0 168 0.6198 0.7561
0.2136 7.0 196 0.5552 0.7805
0.1402 8.0 224 0.5538 0.7805
0.1098 9.0 252 0.5179 0.8049
0.0661 10.0 280 0.4716 0.8293
0.0459 11.0 308 0.4940 0.8049
0.0201 12.0 336 0.4943 0.7805
0.0128 13.0 364 0.4835 0.8049
0.013 14.0 392 0.5177 0.8049
0.005 15.0 420 0.5313 0.7805
0.0049 16.0 448 0.5255 0.8293
0.0033 17.0 476 0.5525 0.8049
0.0027 18.0 504 0.5486 0.8049
0.0024 19.0 532 0.5501 0.8049
0.0021 20.0 560 0.5689 0.8049
0.0017 21.0 588 0.5750 0.8049
0.0016 22.0 616 0.5752 0.8049
0.0015 23.0 644 0.5846 0.8049
0.0013 24.0 672 0.5888 0.8049
0.0012 25.0 700 0.5919 0.8049
0.0012 26.0 728 0.5956 0.8049
0.0011 27.0 756 0.5988 0.8049
0.0011 28.0 784 0.6017 0.8049
0.001 29.0 812 0.6080 0.8049
0.0009 30.0 840 0.6107 0.8049
0.0009 31.0 868 0.6102 0.8049
0.0008 32.0 896 0.6145 0.8049
0.0008 33.0 924 0.6168 0.8049
0.0008 34.0 952 0.6219 0.8049
0.0008 35.0 980 0.6219 0.8049
0.0008 36.0 1008 0.6245 0.8049
0.0007 37.0 1036 0.6250 0.8049
0.0007 38.0 1064 0.6281 0.8049
0.0007 39.0 1092 0.6275 0.8049
0.0006 40.0 1120 0.6308 0.8049
0.0007 41.0 1148 0.6308 0.8049
0.0006 42.0 1176 0.6332 0.8049
0.0006 43.0 1204 0.6344 0.8049
0.0006 44.0 1232 0.6352 0.8049
0.0006 45.0 1260 0.6342 0.8049
0.0006 46.0 1288 0.6344 0.8049
0.0006 47.0 1316 0.6347 0.8049
0.0006 48.0 1344 0.6350 0.8049
0.0006 49.0 1372 0.6350 0.8049
0.0006 50.0 1400 0.6350 0.8049

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0