hkivancoral's picture
End of training
20f7df1
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_small_adamax_00001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9069767441860465

hushem_5x_deit_small_adamax_00001_fold3

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4351
  • Accuracy: 0.9070

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3047 1.0 28 1.2727 0.3023
0.9947 2.0 56 1.1088 0.5116
0.6975 3.0 84 1.0336 0.5814
0.5355 4.0 112 0.9195 0.6047
0.3827 5.0 140 0.8325 0.6279
0.3 6.0 168 0.7235 0.7674
0.2132 7.0 196 0.6638 0.7209
0.1664 8.0 224 0.5923 0.7674
0.1004 9.0 252 0.5516 0.7674
0.0697 10.0 280 0.5067 0.7907
0.0474 11.0 308 0.5078 0.7674
0.0278 12.0 336 0.5312 0.7907
0.0177 13.0 364 0.4466 0.8372
0.0105 14.0 392 0.4059 0.8837
0.0066 15.0 420 0.4235 0.8372
0.005 16.0 448 0.4260 0.8372
0.0043 17.0 476 0.4042 0.8605
0.0033 18.0 504 0.4280 0.8605
0.003 19.0 532 0.4100 0.8837
0.0024 20.0 560 0.4096 0.9070
0.0023 21.0 588 0.4113 0.9070
0.002 22.0 616 0.4075 0.9070
0.0019 23.0 644 0.4099 0.9070
0.0015 24.0 672 0.4158 0.9070
0.0014 25.0 700 0.4120 0.9070
0.0015 26.0 728 0.4156 0.9070
0.0013 27.0 756 0.4154 0.9070
0.0013 28.0 784 0.4244 0.9070
0.0012 29.0 812 0.4172 0.9070
0.0012 30.0 840 0.4177 0.9070
0.0011 31.0 868 0.4272 0.9070
0.0011 32.0 896 0.4248 0.9070
0.001 33.0 924 0.4242 0.9070
0.001 34.0 952 0.4262 0.9070
0.0012 35.0 980 0.4213 0.9070
0.0009 36.0 1008 0.4193 0.9302
0.0009 37.0 1036 0.4299 0.9302
0.0008 38.0 1064 0.4330 0.9070
0.0008 39.0 1092 0.4363 0.9070
0.0009 40.0 1120 0.4311 0.9070
0.0008 41.0 1148 0.4367 0.9070
0.0008 42.0 1176 0.4356 0.9070
0.0008 43.0 1204 0.4345 0.9070
0.0008 44.0 1232 0.4348 0.9070
0.0007 45.0 1260 0.4351 0.9070
0.0007 46.0 1288 0.4351 0.9070
0.0007 47.0 1316 0.4349 0.9070
0.0007 48.0 1344 0.4351 0.9070
0.0007 49.0 1372 0.4351 0.9070
0.0007 50.0 1400 0.4351 0.9070

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0