hkivancoral's picture
End of training
aa5bd7a
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_beit_base_sgd_001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5813953488372093

hushem_5x_beit_base_sgd_001_fold3

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0930
  • Accuracy: 0.5814

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.5405 1.0 28 1.5276 0.2791
1.4164 2.0 56 1.4818 0.2558
1.3492 3.0 84 1.4545 0.3023
1.3001 4.0 112 1.4313 0.3256
1.2739 5.0 140 1.4088 0.3256
1.2528 6.0 168 1.3949 0.3488
1.2748 7.0 196 1.3862 0.3953
1.2477 8.0 224 1.3731 0.3953
1.1334 9.0 252 1.3517 0.4419
1.2313 10.0 280 1.3394 0.4419
1.1559 11.0 308 1.3288 0.4651
1.1429 12.0 336 1.3194 0.4884
1.1222 13.0 364 1.3129 0.4884
1.1193 14.0 392 1.3031 0.4884
1.1208 15.0 420 1.2891 0.4884
1.0856 16.0 448 1.2837 0.5116
1.0813 17.0 476 1.2664 0.4884
1.0315 18.0 504 1.2593 0.5116
1.0461 19.0 532 1.2499 0.5349
1.0 20.0 560 1.2343 0.5349
1.0154 21.0 588 1.2288 0.5581
1.0308 22.0 616 1.2111 0.5116
0.9899 23.0 644 1.2091 0.5349
0.9581 24.0 672 1.2017 0.4651
0.9805 25.0 700 1.1984 0.5116
0.9484 26.0 728 1.1851 0.5116
0.9269 27.0 756 1.1745 0.5116
0.9482 28.0 784 1.1663 0.5581
0.9417 29.0 812 1.1640 0.5116
0.8927 30.0 840 1.1540 0.5349
0.9018 31.0 868 1.1499 0.5349
0.9337 32.0 896 1.1514 0.5116
0.8897 33.0 924 1.1407 0.5349
0.9018 34.0 952 1.1332 0.5349
0.9545 35.0 980 1.1289 0.5581
0.8798 36.0 1008 1.1231 0.5581
0.8701 37.0 1036 1.1207 0.5349
0.8661 38.0 1064 1.1127 0.5581
0.8977 39.0 1092 1.1103 0.5349
0.9369 40.0 1120 1.1062 0.5814
0.8919 41.0 1148 1.1024 0.5814
0.8962 42.0 1176 1.0983 0.5814
0.8751 43.0 1204 1.0966 0.5814
0.895 44.0 1232 1.0957 0.5814
0.863 45.0 1260 1.0942 0.5814
0.8655 46.0 1288 1.0940 0.5814
0.8681 47.0 1316 1.0932 0.5814
0.8242 48.0 1344 1.0930 0.5814
0.8859 49.0 1372 1.0930 0.5814
0.8974 50.0 1400 1.0930 0.5814

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0