hkivancoral's picture
End of training
78f745b
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_beit_base_rms_001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.627906976744186

hushem_5x_beit_base_rms_001_fold3

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4768
  • Accuracy: 0.6279

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.51 1.0 28 1.6351 0.2558
1.3869 2.0 56 1.4127 0.2558
1.3848 3.0 84 1.3895 0.2558
1.4113 4.0 112 1.3824 0.2558
1.3569 5.0 140 1.4121 0.2326
1.4625 6.0 168 1.3739 0.2326
1.3804 7.0 196 1.2185 0.5349
1.1352 8.0 224 1.1411 0.4884
1.0899 9.0 252 1.2426 0.3953
1.0945 10.0 280 1.1820 0.3488
1.1149 11.0 308 1.4574 0.3023
0.9942 12.0 336 1.4728 0.3256
1.0204 13.0 364 0.9801 0.5581
0.9987 14.0 392 1.0096 0.5349
1.0664 15.0 420 1.0007 0.5814
0.9463 16.0 448 1.2188 0.3953
0.9756 17.0 476 1.1284 0.5116
0.9698 18.0 504 1.4394 0.4419
1.061 19.0 532 1.1162 0.4884
0.8426 20.0 560 1.9296 0.3721
0.876 21.0 588 1.0070 0.5581
0.8908 22.0 616 1.2196 0.5349
0.8599 23.0 644 0.9502 0.6047
0.8338 24.0 672 0.8737 0.6279
0.785 25.0 700 1.1006 0.5814
0.82 26.0 728 1.0398 0.5814
0.8016 27.0 756 1.6671 0.3256
0.8574 28.0 784 1.1704 0.6279
0.8104 29.0 812 1.0502 0.6279
0.7421 30.0 840 0.9270 0.5814
0.7093 31.0 868 1.8057 0.4186
0.7469 32.0 896 0.9665 0.5814
0.7175 33.0 924 0.8190 0.6512
0.7129 34.0 952 1.0680 0.6279
0.7793 35.0 980 1.0966 0.5581
0.6879 36.0 1008 0.9990 0.5814
0.7016 37.0 1036 1.7556 0.4884
0.6238 38.0 1064 1.5792 0.4651
0.6025 39.0 1092 1.1502 0.6047
0.7264 40.0 1120 1.3317 0.5349
0.6063 41.0 1148 1.5492 0.5116
0.5816 42.0 1176 1.5787 0.5814
0.4627 43.0 1204 1.1301 0.6047
0.4652 44.0 1232 1.5008 0.6279
0.3885 45.0 1260 1.3167 0.6279
0.4003 46.0 1288 1.3851 0.6512
0.3882 47.0 1316 1.4601 0.6047
0.353 48.0 1344 1.4699 0.6279
0.3487 49.0 1372 1.4768 0.6279
0.2789 50.0 1400 1.4768 0.6279

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0