metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_5x_beit_base_rms_001_fold3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.627906976744186
hushem_5x_beit_base_rms_001_fold3
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.4768
- Accuracy: 0.6279
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.51 | 1.0 | 28 | 1.6351 | 0.2558 |
1.3869 | 2.0 | 56 | 1.4127 | 0.2558 |
1.3848 | 3.0 | 84 | 1.3895 | 0.2558 |
1.4113 | 4.0 | 112 | 1.3824 | 0.2558 |
1.3569 | 5.0 | 140 | 1.4121 | 0.2326 |
1.4625 | 6.0 | 168 | 1.3739 | 0.2326 |
1.3804 | 7.0 | 196 | 1.2185 | 0.5349 |
1.1352 | 8.0 | 224 | 1.1411 | 0.4884 |
1.0899 | 9.0 | 252 | 1.2426 | 0.3953 |
1.0945 | 10.0 | 280 | 1.1820 | 0.3488 |
1.1149 | 11.0 | 308 | 1.4574 | 0.3023 |
0.9942 | 12.0 | 336 | 1.4728 | 0.3256 |
1.0204 | 13.0 | 364 | 0.9801 | 0.5581 |
0.9987 | 14.0 | 392 | 1.0096 | 0.5349 |
1.0664 | 15.0 | 420 | 1.0007 | 0.5814 |
0.9463 | 16.0 | 448 | 1.2188 | 0.3953 |
0.9756 | 17.0 | 476 | 1.1284 | 0.5116 |
0.9698 | 18.0 | 504 | 1.4394 | 0.4419 |
1.061 | 19.0 | 532 | 1.1162 | 0.4884 |
0.8426 | 20.0 | 560 | 1.9296 | 0.3721 |
0.876 | 21.0 | 588 | 1.0070 | 0.5581 |
0.8908 | 22.0 | 616 | 1.2196 | 0.5349 |
0.8599 | 23.0 | 644 | 0.9502 | 0.6047 |
0.8338 | 24.0 | 672 | 0.8737 | 0.6279 |
0.785 | 25.0 | 700 | 1.1006 | 0.5814 |
0.82 | 26.0 | 728 | 1.0398 | 0.5814 |
0.8016 | 27.0 | 756 | 1.6671 | 0.3256 |
0.8574 | 28.0 | 784 | 1.1704 | 0.6279 |
0.8104 | 29.0 | 812 | 1.0502 | 0.6279 |
0.7421 | 30.0 | 840 | 0.9270 | 0.5814 |
0.7093 | 31.0 | 868 | 1.8057 | 0.4186 |
0.7469 | 32.0 | 896 | 0.9665 | 0.5814 |
0.7175 | 33.0 | 924 | 0.8190 | 0.6512 |
0.7129 | 34.0 | 952 | 1.0680 | 0.6279 |
0.7793 | 35.0 | 980 | 1.0966 | 0.5581 |
0.6879 | 36.0 | 1008 | 0.9990 | 0.5814 |
0.7016 | 37.0 | 1036 | 1.7556 | 0.4884 |
0.6238 | 38.0 | 1064 | 1.5792 | 0.4651 |
0.6025 | 39.0 | 1092 | 1.1502 | 0.6047 |
0.7264 | 40.0 | 1120 | 1.3317 | 0.5349 |
0.6063 | 41.0 | 1148 | 1.5492 | 0.5116 |
0.5816 | 42.0 | 1176 | 1.5787 | 0.5814 |
0.4627 | 43.0 | 1204 | 1.1301 | 0.6047 |
0.4652 | 44.0 | 1232 | 1.5008 | 0.6279 |
0.3885 | 45.0 | 1260 | 1.3167 | 0.6279 |
0.4003 | 46.0 | 1288 | 1.3851 | 0.6512 |
0.3882 | 47.0 | 1316 | 1.4601 | 0.6047 |
0.353 | 48.0 | 1344 | 1.4699 | 0.6279 |
0.3487 | 49.0 | 1372 | 1.4768 | 0.6279 |
0.2789 | 50.0 | 1400 | 1.4768 | 0.6279 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0