hkivancoral's picture
End of training
da5f486
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_beit_base_rms_0001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7857142857142857

hushem_5x_beit_base_rms_0001_fold4

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8159
  • Accuracy: 0.7857

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4247 1.0 28 1.3411 0.2381
1.3595 2.0 56 1.2501 0.4286
1.3116 3.0 84 1.5240 0.2381
1.303 4.0 112 1.0491 0.5238
1.1942 5.0 140 0.8861 0.7143
1.1712 6.0 168 0.9106 0.5238
0.977 7.0 196 1.1447 0.6905
0.9351 8.0 224 0.7191 0.7619
0.8453 9.0 252 1.3331 0.5714
0.8831 10.0 280 0.8305 0.6905
0.8349 11.0 308 0.6872 0.7619
0.845 12.0 336 0.7545 0.7619
0.784 13.0 364 0.7961 0.7857
0.7404 14.0 392 0.6338 0.8095
0.6277 15.0 420 0.7200 0.7143
0.6386 16.0 448 0.7383 0.8095
0.6167 17.0 476 0.5440 0.8095
0.5129 18.0 504 0.7061 0.7619
0.3836 19.0 532 0.7181 0.7381
0.3202 20.0 560 0.4277 0.8095
0.1958 21.0 588 1.1637 0.7381
0.2343 22.0 616 1.0581 0.8095
0.2016 23.0 644 0.8968 0.7857
0.116 24.0 672 1.0426 0.7857
0.1027 25.0 700 0.6841 0.8333
0.1133 26.0 728 0.8260 0.8095
0.1258 27.0 756 1.3215 0.7619
0.0595 28.0 784 1.0509 0.8810
0.0945 29.0 812 1.3868 0.7857
0.0022 30.0 840 1.7553 0.8095
0.0004 31.0 868 1.9423 0.7857
0.0466 32.0 896 2.0945 0.8095
0.0367 33.0 924 1.6928 0.8095
0.1032 34.0 952 1.3572 0.8571
0.0331 35.0 980 2.0437 0.8095
0.0001 36.0 1008 2.0414 0.8333
0.0286 37.0 1036 2.0546 0.7619
0.009 38.0 1064 2.8381 0.7857
0.0573 39.0 1092 2.4470 0.7857
0.0497 40.0 1120 1.8192 0.7857
0.0003 41.0 1148 2.1421 0.7143
0.0003 42.0 1176 2.2125 0.7381
0.0001 43.0 1204 2.1555 0.7619
0.0002 44.0 1232 1.8154 0.7381
0.0197 45.0 1260 1.7188 0.7381
0.0002 46.0 1288 1.6637 0.8095
0.0152 47.0 1316 1.6954 0.8095
0.0001 48.0 1344 1.8153 0.7857
0.0002 49.0 1372 1.8159 0.7857
0.0 50.0 1400 1.8159 0.7857

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0