metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_5x_beit_base_rms_00001_fold4
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9047619047619048
hushem_5x_beit_base_rms_00001_fold4
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.4242
- Accuracy: 0.9048
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.7963 | 1.0 | 28 | 0.5873 | 0.8095 |
0.1378 | 2.0 | 56 | 0.2600 | 0.9048 |
0.0372 | 3.0 | 84 | 0.1249 | 0.9286 |
0.0142 | 4.0 | 112 | 0.1881 | 0.9048 |
0.0031 | 5.0 | 140 | 0.2720 | 0.9524 |
0.0011 | 6.0 | 168 | 0.2309 | 0.9286 |
0.0018 | 7.0 | 196 | 0.3809 | 0.9048 |
0.0008 | 8.0 | 224 | 0.3332 | 0.9048 |
0.0014 | 9.0 | 252 | 0.3365 | 0.8810 |
0.0123 | 10.0 | 280 | 0.2089 | 0.9286 |
0.0005 | 11.0 | 308 | 0.1962 | 0.9286 |
0.0038 | 12.0 | 336 | 0.2845 | 0.9048 |
0.0078 | 13.0 | 364 | 0.2498 | 0.9048 |
0.001 | 14.0 | 392 | 0.0353 | 1.0 |
0.0002 | 15.0 | 420 | 0.1604 | 0.9286 |
0.0003 | 16.0 | 448 | 0.6770 | 0.8810 |
0.0002 | 17.0 | 476 | 0.3566 | 0.9048 |
0.0001 | 18.0 | 504 | 0.1974 | 0.8810 |
0.0004 | 19.0 | 532 | 0.0247 | 1.0 |
0.0001 | 20.0 | 560 | 0.0905 | 0.9286 |
0.0001 | 21.0 | 588 | 0.1806 | 0.9286 |
0.0011 | 22.0 | 616 | 0.2156 | 0.9524 |
0.0007 | 23.0 | 644 | 0.4203 | 0.9286 |
0.0002 | 24.0 | 672 | 0.2731 | 0.9286 |
0.0054 | 25.0 | 700 | 0.2589 | 0.8810 |
0.0001 | 26.0 | 728 | 0.2893 | 0.9048 |
0.0 | 27.0 | 756 | 0.3737 | 0.8810 |
0.0002 | 28.0 | 784 | 0.3310 | 0.9048 |
0.0001 | 29.0 | 812 | 0.2394 | 0.9048 |
0.0 | 30.0 | 840 | 0.2320 | 0.9048 |
0.0001 | 31.0 | 868 | 0.2751 | 0.9048 |
0.0012 | 32.0 | 896 | 0.2756 | 0.9048 |
0.0 | 33.0 | 924 | 0.1983 | 0.9048 |
0.0001 | 34.0 | 952 | 0.1565 | 0.9048 |
0.0 | 35.0 | 980 | 0.1912 | 0.9048 |
0.0001 | 36.0 | 1008 | 0.2103 | 0.9048 |
0.0 | 37.0 | 1036 | 0.1693 | 0.9048 |
0.0 | 38.0 | 1064 | 0.1895 | 0.9048 |
0.0 | 39.0 | 1092 | 0.2300 | 0.9048 |
0.0018 | 40.0 | 1120 | 0.7391 | 0.9048 |
0.0 | 41.0 | 1148 | 0.6660 | 0.9048 |
0.0 | 42.0 | 1176 | 0.5981 | 0.9048 |
0.0001 | 43.0 | 1204 | 0.6379 | 0.9048 |
0.0001 | 44.0 | 1232 | 0.5736 | 0.9048 |
0.0002 | 45.0 | 1260 | 0.4940 | 0.9048 |
0.0001 | 46.0 | 1288 | 0.4348 | 0.9048 |
0.0001 | 47.0 | 1316 | 0.4551 | 0.9048 |
0.0 | 48.0 | 1344 | 0.4241 | 0.9048 |
0.0026 | 49.0 | 1372 | 0.4242 | 0.9048 |
0.0 | 50.0 | 1400 | 0.4242 | 0.9048 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0