hkivancoral's picture
End of training
45c68da
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_beit_base_rms_00001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9047619047619048

hushem_5x_beit_base_rms_00001_fold4

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4242
  • Accuracy: 0.9048

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7963 1.0 28 0.5873 0.8095
0.1378 2.0 56 0.2600 0.9048
0.0372 3.0 84 0.1249 0.9286
0.0142 4.0 112 0.1881 0.9048
0.0031 5.0 140 0.2720 0.9524
0.0011 6.0 168 0.2309 0.9286
0.0018 7.0 196 0.3809 0.9048
0.0008 8.0 224 0.3332 0.9048
0.0014 9.0 252 0.3365 0.8810
0.0123 10.0 280 0.2089 0.9286
0.0005 11.0 308 0.1962 0.9286
0.0038 12.0 336 0.2845 0.9048
0.0078 13.0 364 0.2498 0.9048
0.001 14.0 392 0.0353 1.0
0.0002 15.0 420 0.1604 0.9286
0.0003 16.0 448 0.6770 0.8810
0.0002 17.0 476 0.3566 0.9048
0.0001 18.0 504 0.1974 0.8810
0.0004 19.0 532 0.0247 1.0
0.0001 20.0 560 0.0905 0.9286
0.0001 21.0 588 0.1806 0.9286
0.0011 22.0 616 0.2156 0.9524
0.0007 23.0 644 0.4203 0.9286
0.0002 24.0 672 0.2731 0.9286
0.0054 25.0 700 0.2589 0.8810
0.0001 26.0 728 0.2893 0.9048
0.0 27.0 756 0.3737 0.8810
0.0002 28.0 784 0.3310 0.9048
0.0001 29.0 812 0.2394 0.9048
0.0 30.0 840 0.2320 0.9048
0.0001 31.0 868 0.2751 0.9048
0.0012 32.0 896 0.2756 0.9048
0.0 33.0 924 0.1983 0.9048
0.0001 34.0 952 0.1565 0.9048
0.0 35.0 980 0.1912 0.9048
0.0001 36.0 1008 0.2103 0.9048
0.0 37.0 1036 0.1693 0.9048
0.0 38.0 1064 0.1895 0.9048
0.0 39.0 1092 0.2300 0.9048
0.0018 40.0 1120 0.7391 0.9048
0.0 41.0 1148 0.6660 0.9048
0.0 42.0 1176 0.5981 0.9048
0.0001 43.0 1204 0.6379 0.9048
0.0001 44.0 1232 0.5736 0.9048
0.0002 45.0 1260 0.4940 0.9048
0.0001 46.0 1288 0.4348 0.9048
0.0001 47.0 1316 0.4551 0.9048
0.0 48.0 1344 0.4241 0.9048
0.0026 49.0 1372 0.4242 0.9048
0.0 50.0 1400 0.4242 0.9048

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0