hkivancoral's picture
End of training
3a26f3e
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_beit_base_adamax_00001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9285714285714286

hushem_5x_beit_base_adamax_00001_fold4

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2768
  • Accuracy: 0.9286

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2143 1.0 28 1.1034 0.5714
0.7775 2.0 56 0.7868 0.7143
0.4533 3.0 84 0.5700 0.8571
0.3037 4.0 112 0.4325 0.9048
0.1612 5.0 140 0.3176 0.9524
0.1058 6.0 168 0.2780 0.9524
0.0913 7.0 196 0.2215 0.9524
0.0514 8.0 224 0.1972 0.9524
0.0348 9.0 252 0.1996 0.9524
0.0351 10.0 280 0.1992 0.9524
0.0183 11.0 308 0.2116 0.9286
0.0237 12.0 336 0.2277 0.9286
0.0106 13.0 364 0.2270 0.9286
0.0108 14.0 392 0.2101 0.9524
0.0149 15.0 420 0.2231 0.9524
0.0076 16.0 448 0.2350 0.9048
0.0086 17.0 476 0.2204 0.9286
0.0033 18.0 504 0.2707 0.9286
0.0048 19.0 532 0.2227 0.9286
0.0041 20.0 560 0.2590 0.9286
0.0023 21.0 588 0.2904 0.9048
0.0045 22.0 616 0.2887 0.9286
0.0027 23.0 644 0.2955 0.9286
0.0033 24.0 672 0.2912 0.9286
0.0028 25.0 700 0.2636 0.9286
0.0018 26.0 728 0.2618 0.9286
0.0028 27.0 756 0.2893 0.9286
0.0019 28.0 784 0.2937 0.9286
0.0014 29.0 812 0.2912 0.9048
0.0031 30.0 840 0.2819 0.9048
0.0013 31.0 868 0.2819 0.9524
0.006 32.0 896 0.2996 0.9286
0.001 33.0 924 0.2836 0.9048
0.0011 34.0 952 0.2841 0.9286
0.0015 35.0 980 0.2638 0.9286
0.0022 36.0 1008 0.2845 0.9286
0.001 37.0 1036 0.2920 0.9286
0.0015 38.0 1064 0.2827 0.9286
0.0029 39.0 1092 0.2797 0.9286
0.002 40.0 1120 0.2954 0.9286
0.0017 41.0 1148 0.3039 0.9286
0.001 42.0 1176 0.3143 0.9286
0.0014 43.0 1204 0.3005 0.9286
0.0014 44.0 1232 0.2937 0.9286
0.0019 45.0 1260 0.2833 0.9286
0.0042 46.0 1288 0.2805 0.9286
0.0013 47.0 1316 0.2768 0.9286
0.0008 48.0 1344 0.2768 0.9286
0.0031 49.0 1372 0.2768 0.9286
0.0013 50.0 1400 0.2768 0.9286

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0