metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_40x_deit_tiny_sgd_001_fold3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8372093023255814
hushem_40x_deit_tiny_sgd_001_fold3
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.4899
- Accuracy: 0.8372
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.1798 | 1.0 | 217 | 1.2889 | 0.4186 |
1.0098 | 2.0 | 434 | 1.1067 | 0.6047 |
0.7827 | 3.0 | 651 | 0.9427 | 0.6977 |
0.6326 | 4.0 | 868 | 0.7917 | 0.6977 |
0.5443 | 5.0 | 1085 | 0.6647 | 0.7907 |
0.4438 | 6.0 | 1302 | 0.5810 | 0.8140 |
0.3761 | 7.0 | 1519 | 0.5185 | 0.8372 |
0.3386 | 8.0 | 1736 | 0.4778 | 0.8140 |
0.2796 | 9.0 | 1953 | 0.4431 | 0.8605 |
0.2037 | 10.0 | 2170 | 0.4372 | 0.8605 |
0.1624 | 11.0 | 2387 | 0.3943 | 0.8837 |
0.1477 | 12.0 | 2604 | 0.4019 | 0.8605 |
0.1485 | 13.0 | 2821 | 0.3856 | 0.8605 |
0.1192 | 14.0 | 3038 | 0.3686 | 0.8605 |
0.1115 | 15.0 | 3255 | 0.3722 | 0.8605 |
0.0891 | 16.0 | 3472 | 0.3567 | 0.8837 |
0.0776 | 17.0 | 3689 | 0.3631 | 0.8605 |
0.1039 | 18.0 | 3906 | 0.3600 | 0.8605 |
0.0608 | 19.0 | 4123 | 0.3514 | 0.8605 |
0.0639 | 20.0 | 4340 | 0.3706 | 0.8605 |
0.0555 | 21.0 | 4557 | 0.3773 | 0.8605 |
0.0552 | 22.0 | 4774 | 0.3713 | 0.8372 |
0.0457 | 23.0 | 4991 | 0.3749 | 0.8372 |
0.0383 | 24.0 | 5208 | 0.3901 | 0.8372 |
0.0332 | 25.0 | 5425 | 0.3933 | 0.8372 |
0.0322 | 26.0 | 5642 | 0.3995 | 0.8372 |
0.0278 | 27.0 | 5859 | 0.4012 | 0.8372 |
0.0212 | 28.0 | 6076 | 0.3938 | 0.8372 |
0.0224 | 29.0 | 6293 | 0.4080 | 0.8372 |
0.0218 | 30.0 | 6510 | 0.4237 | 0.8372 |
0.0278 | 31.0 | 6727 | 0.4231 | 0.8372 |
0.0212 | 32.0 | 6944 | 0.4330 | 0.8372 |
0.021 | 33.0 | 7161 | 0.4507 | 0.8372 |
0.0127 | 34.0 | 7378 | 0.4390 | 0.8372 |
0.0158 | 35.0 | 7595 | 0.4566 | 0.8372 |
0.0178 | 36.0 | 7812 | 0.4594 | 0.8372 |
0.0109 | 37.0 | 8029 | 0.4570 | 0.8372 |
0.0096 | 38.0 | 8246 | 0.4635 | 0.8372 |
0.0113 | 39.0 | 8463 | 0.4700 | 0.8372 |
0.0149 | 40.0 | 8680 | 0.4815 | 0.8372 |
0.0111 | 41.0 | 8897 | 0.4769 | 0.8372 |
0.0075 | 42.0 | 9114 | 0.4756 | 0.8372 |
0.0093 | 43.0 | 9331 | 0.4800 | 0.8372 |
0.009 | 44.0 | 9548 | 0.4851 | 0.8372 |
0.0065 | 45.0 | 9765 | 0.4808 | 0.8372 |
0.011 | 46.0 | 9982 | 0.4835 | 0.8372 |
0.0064 | 47.0 | 10199 | 0.4871 | 0.8372 |
0.0093 | 48.0 | 10416 | 0.4902 | 0.8372 |
0.0136 | 49.0 | 10633 | 0.4899 | 0.8372 |
0.0058 | 50.0 | 10850 | 0.4899 | 0.8372 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.1+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2