metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_40x_deit_tiny_f3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9069767441860465
hushem_40x_deit_tiny_f3
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.7420
- Accuracy: 0.9070
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.1605 | 1.0 | 108 | 0.5491 | 0.7674 |
0.067 | 2.0 | 217 | 0.3900 | 0.9070 |
0.0289 | 3.0 | 325 | 0.7123 | 0.8372 |
0.0006 | 4.0 | 434 | 0.6304 | 0.9302 |
0.0039 | 5.0 | 542 | 0.7304 | 0.8837 |
0.0003 | 6.0 | 651 | 0.9750 | 0.8372 |
0.0 | 7.0 | 759 | 0.7131 | 0.8837 |
0.0 | 8.0 | 868 | 0.7257 | 0.9070 |
0.0 | 9.0 | 976 | 0.7388 | 0.9070 |
0.0 | 9.95 | 1080 | 0.7420 | 0.9070 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1