hkivancoral's picture
End of training
bc04749
metadata
license: apache-2.0
base_model: microsoft/beit-large-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_40x_beit_large_adamax_001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9761904761904762

hushem_40x_beit_large_adamax_001_fold4

This model is a fine-tuned version of microsoft/beit-large-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0452
  • Accuracy: 0.9762

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4622 1.0 219 0.6192 0.7143
0.1812 2.0 438 0.3334 0.8810
0.1061 3.0 657 0.3100 0.8810
0.061 4.0 876 0.3909 0.9048
0.07 5.0 1095 0.5029 0.8095
0.0116 6.0 1314 0.1841 0.9286
0.0286 7.0 1533 0.1625 0.9524
0.0589 8.0 1752 0.3628 0.9286
0.0111 9.0 1971 0.1004 0.9762
0.0199 10.0 2190 0.2149 0.9524
0.0026 11.0 2409 0.2299 0.9524
0.003 12.0 2628 0.0798 0.9524
0.0002 13.0 2847 0.3767 0.9524
0.0 14.0 3066 0.3423 0.9524
0.0 15.0 3285 0.3097 0.9524
0.0 16.0 3504 0.3620 0.9524
0.0 17.0 3723 0.3599 0.9524
0.0109 18.0 3942 1.0112 0.8810
0.0058 19.0 4161 0.3536 0.9286
0.0 20.0 4380 0.1749 0.9524
0.0 21.0 4599 0.1549 0.9762
0.0 22.0 4818 0.1579 0.9762
0.0001 23.0 5037 0.2020 0.9762
0.0 24.0 5256 0.1981 0.9524
0.0 25.0 5475 0.2004 0.9524
0.0 26.0 5694 0.2385 0.9524
0.0 27.0 5913 0.2312 0.9762
0.0 28.0 6132 0.2326 0.9524
0.0 29.0 6351 0.2329 0.9762
0.0 30.0 6570 0.2354 0.9762
0.0 31.0 6789 0.2406 0.9762
0.0 32.0 7008 0.1614 0.9524
0.0 33.0 7227 0.7242 0.8810
0.0 34.0 7446 0.6237 0.9048
0.0 35.0 7665 0.2046 0.9762
0.0 36.0 7884 0.3311 0.9524
0.0 37.0 8103 0.0102 1.0
0.0 38.0 8322 0.0205 0.9762
0.0 39.0 8541 0.4064 0.9286
0.0 40.0 8760 0.2152 0.9524
0.0 41.0 8979 0.0320 0.9762
0.0 42.0 9198 0.0414 0.9762
0.0 43.0 9417 0.0410 0.9762
0.0 44.0 9636 0.0475 0.9762
0.0 45.0 9855 0.0475 0.9762
0.0 46.0 10074 0.0463 0.9762
0.0 47.0 10293 0.0463 0.9762
0.0 48.0 10512 0.0476 0.9762
0.0 49.0 10731 0.0481 0.9762
0.0 50.0 10950 0.0452 0.9762

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2