hkivancoral's picture
End of training
66879f6
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_sgd_lr0001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.13333333333333333

hushem_1x_deit_tiny_sgd_lr0001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5853
  • Accuracy: 0.1333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.6380 0.1333
1.612 2.0 12 1.6350 0.1333
1.612 3.0 18 1.6320 0.1333
1.5793 4.0 24 1.6293 0.1333
1.6085 5.0 30 1.6268 0.1333
1.6085 6.0 36 1.6242 0.1333
1.5833 7.0 42 1.6217 0.1333
1.5833 8.0 48 1.6197 0.1333
1.5532 9.0 54 1.6175 0.1333
1.5785 10.0 60 1.6153 0.1333
1.5785 11.0 66 1.6132 0.1333
1.5506 12.0 72 1.6113 0.1333
1.5506 13.0 78 1.6095 0.1333
1.5868 14.0 84 1.6078 0.1333
1.532 15.0 90 1.6062 0.1333
1.532 16.0 96 1.6045 0.1333
1.5321 17.0 102 1.6029 0.1333
1.5321 18.0 108 1.6015 0.1333
1.5965 19.0 114 1.6001 0.1333
1.5428 20.0 120 1.5987 0.1333
1.5428 21.0 126 1.5975 0.1333
1.5622 22.0 132 1.5964 0.1333
1.5622 23.0 138 1.5951 0.1333
1.5259 24.0 144 1.5941 0.1333
1.5339 25.0 150 1.5932 0.1333
1.5339 26.0 156 1.5923 0.1333
1.5237 27.0 162 1.5914 0.1333
1.5237 28.0 168 1.5907 0.1333
1.5539 29.0 174 1.5899 0.1333
1.5487 30.0 180 1.5891 0.1333
1.5487 31.0 186 1.5885 0.1333
1.5317 32.0 192 1.5879 0.1333
1.5317 33.0 198 1.5874 0.1333
1.4989 34.0 204 1.5869 0.1333
1.5301 35.0 210 1.5865 0.1333
1.5301 36.0 216 1.5862 0.1333
1.5061 37.0 222 1.5859 0.1333
1.5061 38.0 228 1.5857 0.1333
1.5205 39.0 234 1.5855 0.1333
1.5267 40.0 240 1.5854 0.1333
1.5267 41.0 246 1.5854 0.1333
1.5211 42.0 252 1.5853 0.1333
1.5211 43.0 258 1.5853 0.1333
1.524 44.0 264 1.5853 0.1333
1.5163 45.0 270 1.5853 0.1333
1.5163 46.0 276 1.5853 0.1333
1.5253 47.0 282 1.5853 0.1333
1.5253 48.0 288 1.5853 0.1333
1.5384 49.0 294 1.5853 0.1333
1.5175 50.0 300 1.5853 0.1333

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1