hkivancoral's picture
End of training
63e871d
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_rms_lr001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.4523809523809524

hushem_1x_deit_tiny_rms_lr001_fold4

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1726
  • Accuracy: 0.4524

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 5.8408 0.2619
4.7138 2.0 12 1.8632 0.2381
4.7138 3.0 18 1.9369 0.2619
1.8439 4.0 24 1.7584 0.2381
1.6449 5.0 30 1.4723 0.2619
1.6449 6.0 36 1.7187 0.2381
1.5171 7.0 42 1.4960 0.2381
1.5171 8.0 48 1.3962 0.2619
1.4701 9.0 54 1.4942 0.2619
1.4652 10.0 60 1.3642 0.2381
1.4652 11.0 66 1.4490 0.2619
1.4547 12.0 72 1.1912 0.4524
1.4547 13.0 78 1.4737 0.2857
1.3944 14.0 84 1.2170 0.4286
1.3536 15.0 90 1.3540 0.2381
1.3536 16.0 96 1.0819 0.6190
1.2835 17.0 102 1.1640 0.4286
1.2835 18.0 108 1.2309 0.3333
1.306 19.0 114 1.3288 0.2857
1.2522 20.0 120 1.4561 0.2857
1.2522 21.0 126 1.0774 0.4762
1.2491 22.0 132 1.1807 0.4286
1.2491 23.0 138 1.1668 0.3810
1.1882 24.0 144 1.2075 0.4286
1.2028 25.0 150 1.2635 0.3333
1.2028 26.0 156 1.1653 0.3810
1.1822 27.0 162 1.1741 0.4048
1.1822 28.0 168 1.4014 0.2619
1.1086 29.0 174 1.0259 0.5476
1.1111 30.0 180 1.1225 0.5238
1.1111 31.0 186 1.1813 0.5
1.0458 32.0 192 1.1678 0.4286
1.0458 33.0 198 1.1915 0.4048
1.1348 34.0 204 1.3148 0.5
0.9776 35.0 210 1.0082 0.5238
0.9776 36.0 216 0.9144 0.6190
0.9456 37.0 222 1.0677 0.4762
0.9456 38.0 228 1.0695 0.5238
0.8714 39.0 234 1.1982 0.4762
0.8643 40.0 240 1.1143 0.4048
0.8643 41.0 246 1.1270 0.4524
0.7971 42.0 252 1.1726 0.4524
0.7971 43.0 258 1.1726 0.4524
0.7662 44.0 264 1.1726 0.4524
0.7801 45.0 270 1.1726 0.4524
0.7801 46.0 276 1.1726 0.4524
0.7773 47.0 282 1.1726 0.4524
0.7773 48.0 288 1.1726 0.4524
0.7728 49.0 294 1.1726 0.4524
0.7828 50.0 300 1.1726 0.4524

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1