hkivancoral's picture
End of training
fe4ab47
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_adamax_lr0001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6976744186046512

hushem_1x_deit_tiny_adamax_lr0001_fold3

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8641
  • Accuracy: 0.6977

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.67 1 1.6041 0.2558
No log 2.0 3 1.2890 0.3953
No log 2.67 4 1.2944 0.3023
No log 4.0 6 1.2013 0.4186
No log 4.67 7 1.1135 0.4186
No log 6.0 9 1.0796 0.5349
1.2559 6.67 10 1.0570 0.5581
1.2559 8.0 12 1.1038 0.4884
1.2559 8.67 13 1.0764 0.4884
1.2559 10.0 15 0.9749 0.5349
1.2559 10.67 16 0.9354 0.5581
1.2559 12.0 18 0.9274 0.6279
1.2559 12.67 19 0.9435 0.6512
0.4315 14.0 21 0.9225 0.6512
0.4315 14.67 22 0.9168 0.6279
0.4315 16.0 24 0.8830 0.6279
0.4315 16.67 25 0.8956 0.6512
0.4315 18.0 27 0.9038 0.6744
0.4315 18.67 28 0.8913 0.6744
0.058 20.0 30 0.8683 0.6512
0.058 20.67 31 0.8553 0.6744
0.058 22.0 33 0.8508 0.6977
0.058 22.67 34 0.8546 0.6977
0.058 24.0 36 0.8627 0.6977
0.058 24.67 37 0.8639 0.6977
0.058 26.0 39 0.8636 0.7209
0.0086 26.67 40 0.8627 0.7209
0.0086 28.0 42 0.8622 0.7209
0.0086 28.67 43 0.8622 0.6977
0.0086 30.0 45 0.8629 0.6977
0.0086 30.67 46 0.8632 0.6977
0.0086 32.0 48 0.8638 0.6977
0.0086 32.67 49 0.8640 0.6977
0.004 33.33 50 0.8641 0.6977

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1