metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_1x_deit_tiny_adamax_lr00001_fold3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.46511627906976744
hushem_1x_deit_tiny_adamax_lr00001_fold3
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.0802
- Accuracy: 0.4651
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.67 | 1 | 1.5307 | 0.2093 |
No log | 2.0 | 3 | 1.3769 | 0.3023 |
No log | 2.67 | 4 | 1.3327 | 0.3721 |
No log | 4.0 | 6 | 1.2794 | 0.4419 |
No log | 4.67 | 7 | 1.2620 | 0.4419 |
No log | 6.0 | 9 | 1.2352 | 0.4884 |
1.4092 | 6.67 | 10 | 1.2244 | 0.4884 |
1.4092 | 8.0 | 12 | 1.2093 | 0.4884 |
1.4092 | 8.67 | 13 | 1.2029 | 0.4884 |
1.4092 | 10.0 | 15 | 1.1956 | 0.4651 |
1.4092 | 10.67 | 16 | 1.1914 | 0.4651 |
1.4092 | 12.0 | 18 | 1.1838 | 0.4651 |
1.4092 | 12.67 | 19 | 1.1805 | 0.4651 |
1.1598 | 14.0 | 21 | 1.1690 | 0.4419 |
1.1598 | 14.67 | 22 | 1.1624 | 0.4419 |
1.1598 | 16.0 | 24 | 1.1483 | 0.4186 |
1.1598 | 16.67 | 25 | 1.1431 | 0.4186 |
1.1598 | 18.0 | 27 | 1.1284 | 0.4186 |
1.1598 | 18.67 | 28 | 1.1216 | 0.4419 |
0.9892 | 20.0 | 30 | 1.1096 | 0.4419 |
0.9892 | 20.67 | 31 | 1.1035 | 0.4651 |
0.9892 | 22.0 | 33 | 1.0952 | 0.4651 |
0.9892 | 22.67 | 34 | 1.0922 | 0.4651 |
0.9892 | 24.0 | 36 | 1.0880 | 0.4651 |
0.9892 | 24.67 | 37 | 1.0863 | 0.4651 |
0.9892 | 26.0 | 39 | 1.0835 | 0.4651 |
0.8902 | 26.67 | 40 | 1.0825 | 0.4651 |
0.8902 | 28.0 | 42 | 1.0818 | 0.4651 |
0.8902 | 28.67 | 43 | 1.0817 | 0.4651 |
0.8902 | 30.0 | 45 | 1.0810 | 0.4651 |
0.8902 | 30.67 | 46 | 1.0810 | 0.4651 |
0.8902 | 32.0 | 48 | 1.0805 | 0.4651 |
0.8902 | 32.67 | 49 | 1.0803 | 0.4651 |
0.8497 | 33.33 | 50 | 1.0802 | 0.4651 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1