metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_1x_deit_tiny_adamax_lr00001_fold1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.4222222222222222
hushem_1x_deit_tiny_adamax_lr00001_fold1
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.3005
- Accuracy: 0.4222
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.67 | 1 | 1.4838 | 0.2222 |
No log | 2.0 | 3 | 1.4436 | 0.2222 |
No log | 2.67 | 4 | 1.4334 | 0.1778 |
No log | 4.0 | 6 | 1.4190 | 0.2667 |
No log | 4.67 | 7 | 1.4121 | 0.2889 |
No log | 6.0 | 9 | 1.3991 | 0.3111 |
1.3869 | 6.67 | 10 | 1.3926 | 0.3333 |
1.3869 | 8.0 | 12 | 1.3807 | 0.3556 |
1.3869 | 8.67 | 13 | 1.3748 | 0.3556 |
1.3869 | 10.0 | 15 | 1.3643 | 0.3778 |
1.3869 | 10.67 | 16 | 1.3598 | 0.3778 |
1.3869 | 12.0 | 18 | 1.3511 | 0.4 |
1.3869 | 12.67 | 19 | 1.3478 | 0.3778 |
1.1228 | 14.0 | 21 | 1.3405 | 0.4 |
1.1228 | 14.67 | 22 | 1.3380 | 0.4 |
1.1228 | 16.0 | 24 | 1.3323 | 0.4222 |
1.1228 | 16.67 | 25 | 1.3292 | 0.4222 |
1.1228 | 18.0 | 27 | 1.3250 | 0.4222 |
1.1228 | 18.67 | 28 | 1.3231 | 0.4222 |
0.9505 | 20.0 | 30 | 1.3201 | 0.4222 |
0.9505 | 20.67 | 31 | 1.3189 | 0.4222 |
0.9505 | 22.0 | 33 | 1.3162 | 0.4222 |
0.9505 | 22.67 | 34 | 1.3147 | 0.4222 |
0.9505 | 24.0 | 36 | 1.3120 | 0.4222 |
0.9505 | 24.67 | 37 | 1.3113 | 0.4222 |
0.9505 | 26.0 | 39 | 1.3090 | 0.4222 |
0.8411 | 26.67 | 40 | 1.3078 | 0.4222 |
0.8411 | 28.0 | 42 | 1.3057 | 0.4222 |
0.8411 | 28.67 | 43 | 1.3047 | 0.4222 |
0.8411 | 30.0 | 45 | 1.3028 | 0.4222 |
0.8411 | 30.67 | 46 | 1.3020 | 0.4222 |
0.8411 | 32.0 | 48 | 1.3010 | 0.4222 |
0.8411 | 32.67 | 49 | 1.3007 | 0.4222 |
0.7881 | 33.33 | 50 | 1.3005 | 0.4222 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1