hkivancoral's picture
End of training
3cfd209
|
raw
history blame
4.82 kB
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_adamax_001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5777777777777777

hushem_1x_deit_tiny_adamax_001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1828
  • Accuracy: 0.5778

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.5039 0.2444
1.9347 2.0 12 1.3951 0.2444
1.9347 3.0 18 1.5970 0.2444
1.3507 4.0 24 1.5883 0.2444
1.2448 5.0 30 1.2899 0.3111
1.2448 6.0 36 1.2061 0.3333
1.0721 7.0 42 1.5421 0.4444
1.0721 8.0 48 1.5331 0.2667
1.0322 9.0 54 1.2467 0.4889
1.0027 10.0 60 1.1754 0.4667
1.0027 11.0 66 1.3260 0.4444
0.8782 12.0 72 1.4220 0.3778
0.8782 13.0 78 1.2909 0.3778
0.9336 14.0 84 1.2228 0.3778
0.8518 15.0 90 1.3127 0.4889
0.8518 16.0 96 1.2461 0.5111
0.6856 17.0 102 1.5495 0.5111
0.6856 18.0 108 1.4003 0.4444
0.6629 19.0 114 1.6481 0.5111
0.6106 20.0 120 1.4665 0.5111
0.6106 21.0 126 1.3091 0.4667
0.5404 22.0 132 1.6995 0.5333
0.5404 23.0 138 1.3819 0.4889
0.6208 24.0 144 1.4295 0.4667
0.3803 25.0 150 1.5233 0.4667
0.3803 26.0 156 1.8157 0.5778
0.3131 27.0 162 1.2837 0.5556
0.3131 28.0 168 1.8123 0.5111
0.2542 29.0 174 1.9185 0.5333
0.1524 30.0 180 1.7784 0.6
0.1524 31.0 186 2.2830 0.5333
0.0946 32.0 192 2.4060 0.5556
0.0946 33.0 198 2.8614 0.4889
0.1333 34.0 204 2.7119 0.5333
0.1824 35.0 210 2.7486 0.4667
0.1824 36.0 216 2.8911 0.5556
0.0482 37.0 222 2.9042 0.5556
0.0482 38.0 228 2.8283 0.5778
0.0366 39.0 234 3.0321 0.5778
0.051 40.0 240 3.1410 0.5778
0.051 41.0 246 3.1802 0.5778
0.0414 42.0 252 3.1828 0.5778
0.0414 43.0 258 3.1828 0.5778
0.0218 44.0 264 3.1828 0.5778
0.0134 45.0 270 3.1828 0.5778
0.0134 46.0 276 3.1828 0.5778
0.0227 47.0 282 3.1828 0.5778
0.0227 48.0 288 3.1828 0.5778
0.0135 49.0 294 3.1828 0.5778
0.0221 50.0 300 3.1828 0.5778

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1