hkivancoral's picture
End of training
b063e40
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_small_rms_001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.35555555555555557

hushem_1x_deit_small_rms_001_fold1

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5587
  • Accuracy: 0.3556

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 5.6616 0.2444
4.5403 2.0 12 1.9139 0.2444
4.5403 3.0 18 1.7372 0.2444
1.8724 4.0 24 1.4323 0.2667
1.5505 5.0 30 1.5541 0.2444
1.5505 6.0 36 1.5305 0.2444
1.4992 7.0 42 1.5286 0.2444
1.4992 8.0 48 1.5617 0.2444
1.4899 9.0 54 1.4717 0.2444
1.4501 10.0 60 1.4440 0.2444
1.4501 11.0 66 1.4155 0.2667
1.4052 12.0 72 1.3606 0.2444
1.4052 13.0 78 1.4215 0.3333
1.4555 14.0 84 1.3356 0.3333
1.4209 15.0 90 1.4688 0.2667
1.4209 16.0 96 1.2956 0.4444
1.4079 17.0 102 1.4012 0.2444
1.4079 18.0 108 1.4817 0.2444
1.4101 19.0 114 1.4296 0.2667
1.6129 20.0 120 1.5601 0.2444
1.6129 21.0 126 1.8216 0.2667
1.5349 22.0 132 1.6109 0.2667
1.5349 23.0 138 1.6663 0.2444
1.4443 24.0 144 1.4166 0.2444
1.3949 25.0 150 1.5159 0.2444
1.3949 26.0 156 1.5557 0.2444
1.2549 27.0 162 1.2710 0.3333
1.2549 28.0 168 1.4661 0.3333
1.2756 29.0 174 1.3759 0.3111
1.2244 30.0 180 1.3243 0.4222
1.2244 31.0 186 1.1877 0.4222
1.1482 32.0 192 1.1943 0.4667
1.1482 33.0 198 1.3644 0.3111
1.0904 34.0 204 1.3812 0.3778
1.051 35.0 210 1.3131 0.4444
1.051 36.0 216 1.7518 0.2667
1.0583 37.0 222 1.8440 0.3556
1.0583 38.0 228 1.7450 0.2889
0.8766 39.0 234 1.5767 0.3556
0.9084 40.0 240 1.5052 0.3778
0.9084 41.0 246 1.5534 0.3556
0.8553 42.0 252 1.5587 0.3556
0.8553 43.0 258 1.5587 0.3556
0.8404 44.0 264 1.5587 0.3556
0.8432 45.0 270 1.5587 0.3556
0.8432 46.0 276 1.5587 0.3556
0.8133 47.0 282 1.5587 0.3556
0.8133 48.0 288 1.5587 0.3556
0.8467 49.0 294 1.5587 0.3556
0.8396 50.0 300 1.5587 0.3556

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1