metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_1x_deit_small_adamax_0001_fold4
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8571428571428571
hushem_1x_deit_small_adamax_0001_fold4
This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.3532
- Accuracy: 0.8571
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 6 | 1.3457 | 0.4048 |
1.2924 | 2.0 | 12 | 0.9334 | 0.5952 |
1.2924 | 3.0 | 18 | 0.6841 | 0.6667 |
0.6444 | 4.0 | 24 | 0.7302 | 0.6429 |
0.1694 | 5.0 | 30 | 0.5848 | 0.7619 |
0.1694 | 6.0 | 36 | 0.6575 | 0.7619 |
0.0382 | 7.0 | 42 | 0.4727 | 0.8333 |
0.0382 | 8.0 | 48 | 0.7729 | 0.7381 |
0.0125 | 9.0 | 54 | 0.6089 | 0.7619 |
0.0034 | 10.0 | 60 | 0.3189 | 0.9048 |
0.0034 | 11.0 | 66 | 0.2852 | 0.8810 |
0.0011 | 12.0 | 72 | 0.3340 | 0.8571 |
0.0011 | 13.0 | 78 | 0.3522 | 0.8571 |
0.0007 | 14.0 | 84 | 0.3495 | 0.8571 |
0.0005 | 15.0 | 90 | 0.3442 | 0.8571 |
0.0005 | 16.0 | 96 | 0.3406 | 0.8571 |
0.0004 | 17.0 | 102 | 0.3391 | 0.8571 |
0.0004 | 18.0 | 108 | 0.3391 | 0.8571 |
0.0004 | 19.0 | 114 | 0.3401 | 0.8571 |
0.0004 | 20.0 | 120 | 0.3412 | 0.8571 |
0.0004 | 21.0 | 126 | 0.3433 | 0.8571 |
0.0003 | 22.0 | 132 | 0.3444 | 0.8571 |
0.0003 | 23.0 | 138 | 0.3456 | 0.8571 |
0.0003 | 24.0 | 144 | 0.3474 | 0.8571 |
0.0003 | 25.0 | 150 | 0.3486 | 0.8571 |
0.0003 | 26.0 | 156 | 0.3489 | 0.8571 |
0.0003 | 27.0 | 162 | 0.3489 | 0.8571 |
0.0003 | 28.0 | 168 | 0.3500 | 0.8571 |
0.0003 | 29.0 | 174 | 0.3510 | 0.8571 |
0.0003 | 30.0 | 180 | 0.3511 | 0.8571 |
0.0003 | 31.0 | 186 | 0.3517 | 0.8571 |
0.0003 | 32.0 | 192 | 0.3522 | 0.8571 |
0.0003 | 33.0 | 198 | 0.3523 | 0.8571 |
0.0003 | 34.0 | 204 | 0.3526 | 0.8571 |
0.0003 | 35.0 | 210 | 0.3526 | 0.8571 |
0.0003 | 36.0 | 216 | 0.3527 | 0.8571 |
0.0003 | 37.0 | 222 | 0.3530 | 0.8571 |
0.0003 | 38.0 | 228 | 0.3531 | 0.8571 |
0.0002 | 39.0 | 234 | 0.3531 | 0.8571 |
0.0003 | 40.0 | 240 | 0.3531 | 0.8571 |
0.0003 | 41.0 | 246 | 0.3531 | 0.8571 |
0.0003 | 42.0 | 252 | 0.3532 | 0.8571 |
0.0003 | 43.0 | 258 | 0.3532 | 0.8571 |
0.0002 | 44.0 | 264 | 0.3532 | 0.8571 |
0.0003 | 45.0 | 270 | 0.3532 | 0.8571 |
0.0003 | 46.0 | 276 | 0.3532 | 0.8571 |
0.0003 | 47.0 | 282 | 0.3532 | 0.8571 |
0.0003 | 48.0 | 288 | 0.3532 | 0.8571 |
0.0002 | 49.0 | 294 | 0.3532 | 0.8571 |
0.0003 | 50.0 | 300 | 0.3532 | 0.8571 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1