hkivancoral's picture
End of training
3ee9187
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_beit_base_sgd_001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.3023255813953488

hushem_1x_beit_base_sgd_001_fold3

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3325
  • Accuracy: 0.3023

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.5424 0.2558
1.5472 2.0 12 1.5114 0.2326
1.5472 3.0 18 1.4888 0.2791
1.4947 4.0 24 1.4715 0.2558
1.4055 5.0 30 1.4594 0.2791
1.4055 6.0 36 1.4478 0.3256
1.389 7.0 42 1.4378 0.3023
1.389 8.0 48 1.4298 0.3256
1.3593 9.0 54 1.4226 0.3488
1.3527 10.0 60 1.4160 0.3488
1.3527 11.0 66 1.4104 0.3488
1.3352 12.0 72 1.4055 0.3488
1.3352 13.0 78 1.4005 0.3721
1.2989 14.0 84 1.3949 0.3721
1.3078 15.0 90 1.3896 0.3721
1.3078 16.0 96 1.3853 0.3721
1.2945 17.0 102 1.3807 0.3488
1.2945 18.0 108 1.3772 0.3721
1.2862 19.0 114 1.3730 0.3488
1.2665 20.0 120 1.3692 0.3488
1.2665 21.0 126 1.3663 0.3488
1.2571 22.0 132 1.3633 0.3488
1.2571 23.0 138 1.3594 0.3488
1.2478 24.0 144 1.3564 0.3488
1.2356 25.0 150 1.3537 0.3488
1.2356 26.0 156 1.3506 0.3256
1.253 27.0 162 1.3489 0.3256
1.253 28.0 168 1.3460 0.3256
1.2445 29.0 174 1.3442 0.3256
1.208 30.0 180 1.3430 0.3023
1.208 31.0 186 1.3417 0.3256
1.204 32.0 192 1.3396 0.3023
1.204 33.0 198 1.3381 0.3023
1.1994 34.0 204 1.3371 0.3023
1.1991 35.0 210 1.3357 0.3023
1.1991 36.0 216 1.3349 0.3023
1.1819 37.0 222 1.3343 0.3023
1.1819 38.0 228 1.3338 0.3023
1.1973 39.0 234 1.3332 0.3023
1.1899 40.0 240 1.3328 0.3023
1.1899 41.0 246 1.3326 0.3023
1.1779 42.0 252 1.3325 0.3023
1.1779 43.0 258 1.3325 0.3023
1.1962 44.0 264 1.3325 0.3023
1.2031 45.0 270 1.3325 0.3023
1.2031 46.0 276 1.3325 0.3023
1.1985 47.0 282 1.3325 0.3023
1.1985 48.0 288 1.3325 0.3023
1.1942 49.0 294 1.3325 0.3023
1.1653 50.0 300 1.3325 0.3023

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0