hkivancoral's picture
End of training
4288d16
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_beit_base_sgd_0001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.26666666666666666

hushem_1x_beit_base_sgd_0001_fold2

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4763
  • Accuracy: 0.2667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.5508 0.2667
1.5993 2.0 12 1.5460 0.2667
1.5993 3.0 18 1.5415 0.2667
1.5379 4.0 24 1.5376 0.2667
1.5842 5.0 30 1.5337 0.2667
1.5842 6.0 36 1.5302 0.2667
1.5559 7.0 42 1.5267 0.2667
1.5559 8.0 48 1.5233 0.2667
1.5583 9.0 54 1.5200 0.2667
1.5216 10.0 60 1.5170 0.2667
1.5216 11.0 66 1.5141 0.2667
1.5475 12.0 72 1.5116 0.2667
1.5475 13.0 78 1.5088 0.2667
1.5228 14.0 84 1.5063 0.2667
1.5337 15.0 90 1.5038 0.2667
1.5337 16.0 96 1.5015 0.2667
1.5424 17.0 102 1.4994 0.2667
1.5424 18.0 108 1.4973 0.2667
1.5261 19.0 114 1.4953 0.2667
1.5374 20.0 120 1.4936 0.2667
1.5374 21.0 126 1.4921 0.2667
1.5211 22.0 132 1.4905 0.2667
1.5211 23.0 138 1.4888 0.2667
1.5308 24.0 144 1.4875 0.2667
1.501 25.0 150 1.4863 0.2667
1.501 26.0 156 1.4851 0.2667
1.4969 27.0 162 1.4841 0.2667
1.4969 28.0 168 1.4832 0.2667
1.4796 29.0 174 1.4822 0.2667
1.5135 30.0 180 1.4813 0.2667
1.5135 31.0 186 1.4804 0.2667
1.4924 32.0 192 1.4797 0.2667
1.4924 33.0 198 1.4791 0.2667
1.4838 34.0 204 1.4785 0.2667
1.4833 35.0 210 1.4779 0.2667
1.4833 36.0 216 1.4775 0.2667
1.4826 37.0 222 1.4771 0.2667
1.4826 38.0 228 1.4768 0.2667
1.5058 39.0 234 1.4766 0.2667
1.4814 40.0 240 1.4764 0.2667
1.4814 41.0 246 1.4764 0.2667
1.4809 42.0 252 1.4763 0.2667
1.4809 43.0 258 1.4763 0.2667
1.5264 44.0 264 1.4763 0.2667
1.4935 45.0 270 1.4763 0.2667
1.4935 46.0 276 1.4763 0.2667
1.4909 47.0 282 1.4763 0.2667
1.4909 48.0 288 1.4763 0.2667
1.4851 49.0 294 1.4763 0.2667
1.5045 50.0 300 1.4763 0.2667

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0