hkivancoral's picture
End of training
5f00514
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_beit_base_adamax_001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.4444444444444444

hushem_1x_beit_base_adamax_001_fold1

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 3.6981
  • Accuracy: 0.4444

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.5800 0.2444
2.0893 2.0 12 1.3869 0.3333
2.0893 3.0 18 1.3893 0.2444
1.4148 4.0 24 1.3366 0.3333
1.3117 5.0 30 1.3938 0.2889
1.3117 6.0 36 1.5221 0.3778
1.2096 7.0 42 1.7519 0.4222
1.2096 8.0 48 1.6213 0.2444
1.1162 9.0 54 1.4721 0.2889
1.0871 10.0 60 1.3748 0.3333
1.0871 11.0 66 1.7274 0.4667
1.0753 12.0 72 3.1976 0.3333
1.0753 13.0 78 1.3693 0.4222
1.2635 14.0 84 1.5090 0.3778
0.9248 15.0 90 1.4886 0.5333
0.9248 16.0 96 1.4765 0.4444
0.8798 17.0 102 1.9348 0.4222
0.8798 18.0 108 1.3064 0.4667
0.8666 19.0 114 1.5832 0.4444
0.7171 20.0 120 2.1360 0.4444
0.7171 21.0 126 1.7636 0.4444
0.7588 22.0 132 2.3529 0.3556
0.7588 23.0 138 2.7880 0.3556
0.6002 24.0 144 1.8764 0.4222
0.5204 25.0 150 2.9921 0.4
0.5204 26.0 156 2.6311 0.4444
0.4748 27.0 162 2.1490 0.4889
0.4748 28.0 168 2.4874 0.4889
0.4423 29.0 174 1.9273 0.4444
0.3826 30.0 180 3.0375 0.4222
0.3826 31.0 186 3.0775 0.4667
0.3486 32.0 192 2.5400 0.4
0.3486 33.0 198 3.1424 0.4444
0.3116 34.0 204 2.9144 0.4667
0.2168 35.0 210 3.3792 0.4444
0.2168 36.0 216 3.7895 0.4667
0.2383 37.0 222 3.1800 0.4889
0.2383 38.0 228 3.3532 0.4444
0.1463 39.0 234 3.6524 0.4222
0.1584 40.0 240 3.6346 0.4444
0.1584 41.0 246 3.6838 0.4444
0.1431 42.0 252 3.6981 0.4444
0.1431 43.0 258 3.6981 0.4444
0.1356 44.0 264 3.6981 0.4444
0.139 45.0 270 3.6981 0.4444
0.139 46.0 276 3.6981 0.4444
0.1502 47.0 282 3.6981 0.4444
0.1502 48.0 288 3.6981 0.4444
0.128 49.0 294 3.6981 0.4444
0.1474 50.0 300 3.6981 0.4444

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0