metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_1x_beit_base_adamax_001_fold1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.4444444444444444
hushem_1x_beit_base_adamax_001_fold1
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 3.6981
- Accuracy: 0.4444
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 6 | 1.5800 | 0.2444 |
2.0893 | 2.0 | 12 | 1.3869 | 0.3333 |
2.0893 | 3.0 | 18 | 1.3893 | 0.2444 |
1.4148 | 4.0 | 24 | 1.3366 | 0.3333 |
1.3117 | 5.0 | 30 | 1.3938 | 0.2889 |
1.3117 | 6.0 | 36 | 1.5221 | 0.3778 |
1.2096 | 7.0 | 42 | 1.7519 | 0.4222 |
1.2096 | 8.0 | 48 | 1.6213 | 0.2444 |
1.1162 | 9.0 | 54 | 1.4721 | 0.2889 |
1.0871 | 10.0 | 60 | 1.3748 | 0.3333 |
1.0871 | 11.0 | 66 | 1.7274 | 0.4667 |
1.0753 | 12.0 | 72 | 3.1976 | 0.3333 |
1.0753 | 13.0 | 78 | 1.3693 | 0.4222 |
1.2635 | 14.0 | 84 | 1.5090 | 0.3778 |
0.9248 | 15.0 | 90 | 1.4886 | 0.5333 |
0.9248 | 16.0 | 96 | 1.4765 | 0.4444 |
0.8798 | 17.0 | 102 | 1.9348 | 0.4222 |
0.8798 | 18.0 | 108 | 1.3064 | 0.4667 |
0.8666 | 19.0 | 114 | 1.5832 | 0.4444 |
0.7171 | 20.0 | 120 | 2.1360 | 0.4444 |
0.7171 | 21.0 | 126 | 1.7636 | 0.4444 |
0.7588 | 22.0 | 132 | 2.3529 | 0.3556 |
0.7588 | 23.0 | 138 | 2.7880 | 0.3556 |
0.6002 | 24.0 | 144 | 1.8764 | 0.4222 |
0.5204 | 25.0 | 150 | 2.9921 | 0.4 |
0.5204 | 26.0 | 156 | 2.6311 | 0.4444 |
0.4748 | 27.0 | 162 | 2.1490 | 0.4889 |
0.4748 | 28.0 | 168 | 2.4874 | 0.4889 |
0.4423 | 29.0 | 174 | 1.9273 | 0.4444 |
0.3826 | 30.0 | 180 | 3.0375 | 0.4222 |
0.3826 | 31.0 | 186 | 3.0775 | 0.4667 |
0.3486 | 32.0 | 192 | 2.5400 | 0.4 |
0.3486 | 33.0 | 198 | 3.1424 | 0.4444 |
0.3116 | 34.0 | 204 | 2.9144 | 0.4667 |
0.2168 | 35.0 | 210 | 3.3792 | 0.4444 |
0.2168 | 36.0 | 216 | 3.7895 | 0.4667 |
0.2383 | 37.0 | 222 | 3.1800 | 0.4889 |
0.2383 | 38.0 | 228 | 3.3532 | 0.4444 |
0.1463 | 39.0 | 234 | 3.6524 | 0.4222 |
0.1584 | 40.0 | 240 | 3.6346 | 0.4444 |
0.1584 | 41.0 | 246 | 3.6838 | 0.4444 |
0.1431 | 42.0 | 252 | 3.6981 | 0.4444 |
0.1431 | 43.0 | 258 | 3.6981 | 0.4444 |
0.1356 | 44.0 | 264 | 3.6981 | 0.4444 |
0.139 | 45.0 | 270 | 3.6981 | 0.4444 |
0.139 | 46.0 | 276 | 3.6981 | 0.4444 |
0.1502 | 47.0 | 282 | 3.6981 | 0.4444 |
0.1502 | 48.0 | 288 | 3.6981 | 0.4444 |
0.128 | 49.0 | 294 | 3.6981 | 0.4444 |
0.1474 | 50.0 | 300 | 3.6981 | 0.4444 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0