hkivancoral's picture
End of training
b539206
|
raw
history blame
4.82 kB
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_beit_base_adamax_0001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8604651162790697

hushem_1x_beit_base_adamax_0001_fold3

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5855
  • Accuracy: 0.8605

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.0849 0.5349
1.2852 2.0 12 0.7460 0.7907
1.2852 3.0 18 0.5699 0.8140
0.4305 4.0 24 0.3649 0.8605
0.1805 5.0 30 0.2406 0.9535
0.1805 6.0 36 0.4656 0.8837
0.0211 7.0 42 0.4915 0.8605
0.0211 8.0 48 0.5042 0.8372
0.0066 9.0 54 0.6760 0.7907
0.0025 10.0 60 0.6098 0.8605
0.0025 11.0 66 0.6353 0.9070
0.0011 12.0 72 0.6882 0.8837
0.0011 13.0 78 0.6437 0.8837
0.0022 14.0 84 0.5430 0.8605
0.0007 15.0 90 0.5436 0.8605
0.0007 16.0 96 0.5847 0.8605
0.0007 17.0 102 0.7054 0.8605
0.0007 18.0 108 0.7624 0.8372
0.0006 19.0 114 0.6619 0.8605
0.0007 20.0 120 0.6238 0.8372
0.0007 21.0 126 0.6086 0.8372
0.0003 22.0 132 0.6074 0.8372
0.0003 23.0 138 0.6228 0.8605
0.0003 24.0 144 0.6265 0.8605
0.0003 25.0 150 0.6139 0.8372
0.0003 26.0 156 0.6063 0.8372
0.0002 27.0 162 0.5981 0.8372
0.0002 28.0 168 0.5901 0.8372
0.0002 29.0 174 0.5785 0.8605
0.0001 30.0 180 0.5753 0.8605
0.0001 31.0 186 0.5775 0.8605
0.0002 32.0 192 0.5781 0.8605
0.0002 33.0 198 0.5782 0.8605
0.0002 34.0 204 0.5804 0.8605
0.0003 35.0 210 0.5817 0.8605
0.0003 36.0 216 0.5823 0.8605
0.0001 37.0 222 0.5831 0.8605
0.0001 38.0 228 0.5855 0.8605
0.0002 39.0 234 0.5859 0.8605
0.0002 40.0 240 0.5858 0.8605
0.0002 41.0 246 0.5855 0.8605
0.0002 42.0 252 0.5855 0.8605
0.0002 43.0 258 0.5855 0.8605
0.0002 44.0 264 0.5855 0.8605
0.0001 45.0 270 0.5855 0.8605
0.0001 46.0 276 0.5855 0.8605
0.0005 47.0 282 0.5855 0.8605
0.0005 48.0 288 0.5855 0.8605
0.0002 49.0 294 0.5855 0.8605
0.0001 50.0 300 0.5855 0.8605

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0