metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_1x_beit_base_adamax_0001_fold1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7333333333333333
hushem_1x_beit_base_adamax_0001_fold1
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.1942
- Accuracy: 0.7333
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 6 | 1.1737 | 0.5111 |
1.2996 | 2.0 | 12 | 0.6731 | 0.7111 |
1.2996 | 3.0 | 18 | 0.5816 | 0.7778 |
0.3034 | 4.0 | 24 | 0.5950 | 0.7778 |
0.0484 | 5.0 | 30 | 0.7873 | 0.7333 |
0.0484 | 6.0 | 36 | 0.7472 | 0.7556 |
0.0106 | 7.0 | 42 | 0.8528 | 0.8 |
0.0106 | 8.0 | 48 | 0.7211 | 0.7778 |
0.0205 | 9.0 | 54 | 0.6347 | 0.7778 |
0.0012 | 10.0 | 60 | 0.6115 | 0.8 |
0.0012 | 11.0 | 66 | 0.6050 | 0.8222 |
0.0005 | 12.0 | 72 | 0.6253 | 0.8222 |
0.0005 | 13.0 | 78 | 0.7723 | 0.8 |
0.0021 | 14.0 | 84 | 0.9287 | 0.8 |
0.0003 | 15.0 | 90 | 1.0136 | 0.7778 |
0.0003 | 16.0 | 96 | 0.9985 | 0.7778 |
0.0004 | 17.0 | 102 | 0.9348 | 0.7778 |
0.0004 | 18.0 | 108 | 0.8985 | 0.8 |
0.0003 | 19.0 | 114 | 0.8733 | 0.8222 |
0.0009 | 20.0 | 120 | 0.8790 | 0.8222 |
0.0009 | 21.0 | 126 | 1.1330 | 0.7778 |
0.0002 | 22.0 | 132 | 1.2620 | 0.7556 |
0.0002 | 23.0 | 138 | 1.3184 | 0.7556 |
0.0003 | 24.0 | 144 | 1.3104 | 0.7778 |
0.0003 | 25.0 | 150 | 1.2554 | 0.7556 |
0.0003 | 26.0 | 156 | 1.2162 | 0.7556 |
0.0002 | 27.0 | 162 | 1.1923 | 0.7333 |
0.0002 | 28.0 | 168 | 1.1869 | 0.7333 |
0.0002 | 29.0 | 174 | 1.1546 | 0.7333 |
0.0002 | 30.0 | 180 | 1.1302 | 0.7556 |
0.0002 | 31.0 | 186 | 1.1214 | 0.7556 |
0.0003 | 32.0 | 192 | 1.1205 | 0.7556 |
0.0003 | 33.0 | 198 | 1.1222 | 0.7556 |
0.0018 | 34.0 | 204 | 1.1316 | 0.7556 |
0.0004 | 35.0 | 210 | 1.1630 | 0.7556 |
0.0004 | 36.0 | 216 | 1.1838 | 0.7333 |
0.0002 | 37.0 | 222 | 1.1946 | 0.7333 |
0.0002 | 38.0 | 228 | 1.1949 | 0.7333 |
0.0004 | 39.0 | 234 | 1.1930 | 0.7333 |
0.0002 | 40.0 | 240 | 1.1932 | 0.7333 |
0.0002 | 41.0 | 246 | 1.1940 | 0.7333 |
0.0002 | 42.0 | 252 | 1.1942 | 0.7333 |
0.0002 | 43.0 | 258 | 1.1942 | 0.7333 |
0.0002 | 44.0 | 264 | 1.1942 | 0.7333 |
0.0002 | 45.0 | 270 | 1.1942 | 0.7333 |
0.0002 | 46.0 | 276 | 1.1942 | 0.7333 |
0.0002 | 47.0 | 282 | 1.1942 | 0.7333 |
0.0002 | 48.0 | 288 | 1.1942 | 0.7333 |
0.0003 | 49.0 | 294 | 1.1942 | 0.7333 |
0.0001 | 50.0 | 300 | 1.1942 | 0.7333 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0