hkivancoral's picture
End of training
942cd5a
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_beit_base_adamax_0001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7333333333333333

hushem_1x_beit_base_adamax_0001_fold1

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1942
  • Accuracy: 0.7333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.1737 0.5111
1.2996 2.0 12 0.6731 0.7111
1.2996 3.0 18 0.5816 0.7778
0.3034 4.0 24 0.5950 0.7778
0.0484 5.0 30 0.7873 0.7333
0.0484 6.0 36 0.7472 0.7556
0.0106 7.0 42 0.8528 0.8
0.0106 8.0 48 0.7211 0.7778
0.0205 9.0 54 0.6347 0.7778
0.0012 10.0 60 0.6115 0.8
0.0012 11.0 66 0.6050 0.8222
0.0005 12.0 72 0.6253 0.8222
0.0005 13.0 78 0.7723 0.8
0.0021 14.0 84 0.9287 0.8
0.0003 15.0 90 1.0136 0.7778
0.0003 16.0 96 0.9985 0.7778
0.0004 17.0 102 0.9348 0.7778
0.0004 18.0 108 0.8985 0.8
0.0003 19.0 114 0.8733 0.8222
0.0009 20.0 120 0.8790 0.8222
0.0009 21.0 126 1.1330 0.7778
0.0002 22.0 132 1.2620 0.7556
0.0002 23.0 138 1.3184 0.7556
0.0003 24.0 144 1.3104 0.7778
0.0003 25.0 150 1.2554 0.7556
0.0003 26.0 156 1.2162 0.7556
0.0002 27.0 162 1.1923 0.7333
0.0002 28.0 168 1.1869 0.7333
0.0002 29.0 174 1.1546 0.7333
0.0002 30.0 180 1.1302 0.7556
0.0002 31.0 186 1.1214 0.7556
0.0003 32.0 192 1.1205 0.7556
0.0003 33.0 198 1.1222 0.7556
0.0018 34.0 204 1.1316 0.7556
0.0004 35.0 210 1.1630 0.7556
0.0004 36.0 216 1.1838 0.7333
0.0002 37.0 222 1.1946 0.7333
0.0002 38.0 228 1.1949 0.7333
0.0004 39.0 234 1.1930 0.7333
0.0002 40.0 240 1.1932 0.7333
0.0002 41.0 246 1.1940 0.7333
0.0002 42.0 252 1.1942 0.7333
0.0002 43.0 258 1.1942 0.7333
0.0002 44.0 264 1.1942 0.7333
0.0002 45.0 270 1.1942 0.7333
0.0002 46.0 276 1.1942 0.7333
0.0002 47.0 282 1.1942 0.7333
0.0002 48.0 288 1.1942 0.7333
0.0003 49.0 294 1.1942 0.7333
0.0001 50.0 300 1.1942 0.7333

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0