metadata
language:
- en
- zh
license: other
library_name: transformers
tags:
- llama
- qwen
license_name: qwen
license_link: >-
https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT
pipeline_tag: text-generation
inference: false
model-index:
- name: Qwen-14B-Chat-LLaMAfied
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 57.51
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=hiyouga/Qwen-14B-Chat-LLaMAfied
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 82.11
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=hiyouga/Qwen-14B-Chat-LLaMAfied
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.57
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=hiyouga/Qwen-14B-Chat-LLaMAfied
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 51.99
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=hiyouga/Qwen-14B-Chat-LLaMAfied
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 72.93
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=hiyouga/Qwen-14B-Chat-LLaMAfied
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 39.5
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=hiyouga/Qwen-14B-Chat-LLaMAfied
name: Open LLM Leaderboard
This is the LLaMAfied version of Qwen-14B-Chat model by Alibaba Cloud.
This model is converted with https://github.com/hiyouga/LLaMA-Factory/blob/main/tests/llamafy_qwen.py
The tokenizer is borrowed from https://huggingface.co/CausalLM/72B-preview-llamafied-qwen-llamafy
You may use this model for fine-tuning in downstream tasks, we recommend using our efficient fine-tuning toolkit. https://github.com/hiyouga/LLaMA-Factory
- Developed by: Alibaba Cloud.
- Language(s) (NLP): Chinese/English
- License: Tongyi Qianwen License
Usage:
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
tokenizer = AutoTokenizer.from_pretrained("hiyouga/Qwen-14B-Chat-LLaMAfied")
model = AutoModelForCausalLM.from_pretrained("hiyouga/Qwen-14B-Chat-LLaMAfied", torch_dtype="auto", device_map="auto")
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
messages = [
{"role": "user", "content": "Who are you?"}
]
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
inputs = inputs.to("cuda")
generate_ids = model.generate(inputs, streamer=streamer)
You could also alternatively launch a CLI demo by using the script in LLaMA-Factory
python src/cli_demo.py --template qwen --model_name_or_path hiyouga/Qwen-14B-Chat-LLaMAfied
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 61.60 |
AI2 Reasoning Challenge (25-Shot) | 57.51 |
HellaSwag (10-Shot) | 82.11 |
MMLU (5-Shot) | 65.57 |
TruthfulQA (0-shot) | 51.99 |
Winogrande (5-shot) | 72.93 |
GSM8k (5-shot) | 39.50 |