metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- PolyAI/minds14
metrics:
- wer
model-index:
- name: whisper-tiny-minds14
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: PolyAI/minds14
type: PolyAI/minds14
config: en-US
split: train
args: en-US
metrics:
- name: Wer
type: wer
value: 0.33412042502951594
whisper-tiny-minds14
This model is a fine-tuned version of openai/whisper-tiny on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set:
- Loss: 0.4866
- Wer Ortho: 0.3356
- Wer: 0.3341
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 5
- training_steps: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
---|---|---|---|---|---|
3.8369 | 0.36 | 5 | 2.6069 | 0.5200 | 0.4044 |
1.9739 | 0.71 | 10 | 1.0073 | 0.4411 | 0.4026 |
0.728 | 1.07 | 15 | 0.6096 | 0.3948 | 0.3902 |
0.3929 | 1.43 | 20 | 0.5288 | 0.4503 | 0.4486 |
0.4044 | 1.79 | 25 | 0.4995 | 0.3430 | 0.3430 |
0.311 | 2.14 | 30 | 0.4772 | 0.3701 | 0.3701 |
0.2404 | 2.5 | 35 | 0.4738 | 0.3134 | 0.3135 |
0.1688 | 2.86 | 40 | 0.4700 | 0.3257 | 0.3253 |
0.1278 | 3.21 | 45 | 0.4748 | 0.3183 | 0.3164 |
0.0775 | 3.57 | 50 | 0.4866 | 0.3356 | 0.3341 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.0.0
- Datasets 2.15.0
- Tokenizers 0.15.0