SentenceTransformer based on google-bert/bert-base-uncased
This is a sentence-transformers model finetuned from google-bert/bert-base-uncased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google-bert/bert-base-uncased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("hcy5561/distilroberta-base-sentence-transformer-triplets")
# Run inference
sentences = [
'How did Halloween Originate? What country did it originate on?',
'In what country did Halloween originate?',
'What was Halloween like in the 1990s?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
QQP-nli-dev
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9878 |
dot_accuracy | 0.0124 |
manhattan_accuracy | 0.9874 |
euclidean_accuracy | 0.9878 |
max_accuracy | 0.9878 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 91,585 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 13.95 tokens
- max: 50 tokens
- min: 6 tokens
- mean: 14.02 tokens
- max: 52 tokens
- min: 6 tokens
- mean: 14.68 tokens
- max: 60 tokens
- Samples:
anchor positive negative How can I overcome a bad mood?
How do I break out of a bad mood?
The world around me seems so austere and gloomy because of my mood. It's depressing me considerably. What can I do?
What are symptoms of mild schizophrenia?
What are some symptoms of when you become schizophrenic?
Is confusion another symptom of being schizophrenic?
What are some ideas which transformed ordinary people into millionaires?
What are some things ordinary people know but millionaires don't?
What can billionaires do that millionaire cannot do?
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Evaluation Dataset
Unnamed Dataset
- Size: 5,088 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 14.14 tokens
- max: 44 tokens
- min: 6 tokens
- mean: 13.96 tokens
- max: 49 tokens
- min: 6 tokens
- mean: 14.8 tokens
- max: 60 tokens
- Samples:
anchor positive negative Why do I see the exact same questions in my feed all the time?
Why are too many questions repeating in my feed sometimes?
Why does this "question" keep showing up in the Unorganized Questions global_feed? (see description for screenshot)
Can we expect time travel to become a reality?
Can we time travel anyhow?
What do you hAve to say about time travel (I am not science student but I read it on net and its so exciting topic but still no clear idea that is it possible or it's just a rumour)?
Is it too late to start medical school at 32?
Is it too late to go to medical school at 24?
As a 14 year old girl who wants to go to medical school, should I work extremely hard and study a lot now to be ready for it? What should I do?
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 32per_device_eval_batch_size
: 32num_train_epochs
: 4warmup_ratio
: 0.1batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falsefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | QQP-nli-dev_max_accuracy |
---|---|---|---|---|
0 | 0 | - | - | 0.8783 |
0.1746 | 500 | 2.3079 | 0.8664 | 0.9581 |
0.3493 | 1000 | 0.9367 | 0.5027 | 0.9737 |
0.5239 | 1500 | 0.6747 | 0.4471 | 0.9743 |
0.6986 | 2000 | 0.5323 | 0.3740 | 0.9776 |
0.8732 | 2500 | 0.4765 | 0.3178 | 0.9825 |
1.0479 | 3000 | 0.4104 | 0.2809 | 0.9866 |
1.2225 | 3500 | 0.3266 | 0.2633 | 0.9870 |
1.3971 | 4000 | 0.2129 | 0.2566 | 0.9862 |
1.5718 | 4500 | 0.1559 | 0.2542 | 0.9858 |
1.7464 | 5000 | 0.1432 | 0.2482 | 0.9853 |
1.9211 | 5500 | 0.1361 | 0.2370 | 0.9845 |
2.0957 | 6000 | 0.1179 | 0.2102 | 0.9880 |
2.2703 | 6500 | 0.0921 | 0.2201 | 0.9870 |
2.4450 | 7000 | 0.0656 | 0.2075 | 0.9878 |
2.6196 | 7500 | 0.0497 | 0.2011 | 0.9876 |
2.7943 | 8000 | 0.0455 | 0.1960 | 0.9878 |
2.9689 | 8500 | 0.0422 | 0.1973 | 0.9872 |
3.1436 | 9000 | 0.0349 | 0.1863 | 0.9890 |
3.3182 | 9500 | 0.0319 | 0.1850 | 0.9882 |
3.4928 | 10000 | 0.02 | 0.1854 | 0.9882 |
3.6675 | 10500 | 0.0184 | 0.1849 | 0.9884 |
3.8421 | 11000 | 0.0178 | 0.1828 | 0.9878 |
Framework Versions
- Python: 3.10.6
- Sentence Transformers: 3.0.1
- Transformers: 4.39.3
- PyTorch: 2.2.2+cu118
- Accelerate: 0.28.0
- Datasets: 2.20.0
- Tokenizers: 0.15.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for hcy5561/distilroberta-base-sentence-transformer-triplets
Base model
google-bert/bert-base-uncasedEvaluation results
- Cosine Accuracy on QQP nli devself-reported0.988
- Dot Accuracy on QQP nli devself-reported0.012
- Manhattan Accuracy on QQP nli devself-reported0.987
- Euclidean Accuracy on QQP nli devself-reported0.988
- Max Accuracy on QQP nli devself-reported0.988