haryoaw's picture
Initial Commit
1e8487a verified
metadata
license: mit
base_model: facebook/xlm-v-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: scenario-TCR-XLMV_data-en-cardiff_eng_only_delta2
    results: []

scenario-TCR-XLMV_data-en-cardiff_eng_only_delta2

This model is a fine-tuned version of facebook/xlm-v-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0986
  • Accuracy: 0.3333
  • F1: 0.1667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 2
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.03 60 1.0983 0.3369 0.1756
No log 2.07 120 1.2358 0.3602 0.2232
No log 3.1 180 1.2414 0.3704 0.2465
No log 4.14 240 1.0987 0.3333 0.1667
No log 5.17 300 1.0987 0.3333 0.1667
No log 6.21 360 1.0995 0.3333 0.1667
No log 7.24 420 1.0991 0.3333 0.1667
No log 8.28 480 1.0990 0.3333 0.1667
1.0956 9.31 540 1.1003 0.3333 0.1667
1.0956 10.34 600 1.0988 0.3333 0.1667
1.0956 11.38 660 1.0988 0.3333 0.1667
1.0956 12.41 720 1.0986 0.3333 0.1667
1.0956 13.45 780 1.0987 0.3333 0.1667
1.0956 14.48 840 1.0987 0.3333 0.1667
1.0956 15.52 900 1.0992 0.3333 0.1667
1.0956 16.55 960 1.0987 0.3333 0.1667
1.0997 17.59 1020 1.0987 0.3333 0.1667
1.0997 18.62 1080 1.0987 0.3333 0.1667
1.0997 19.66 1140 1.0989 0.3333 0.1667
1.0997 20.69 1200 1.0987 0.3333 0.1667
1.0997 21.72 1260 1.0986 0.3333 0.1667
1.0997 22.76 1320 1.0986 0.3333 0.1667
1.0997 23.79 1380 1.0988 0.3333 0.1667
1.0997 24.83 1440 1.0987 0.3333 0.1667
1.0996 25.86 1500 1.0987 0.3333 0.1667
1.0996 26.9 1560 1.0986 0.3333 0.1667
1.0996 27.93 1620 1.0986 0.3333 0.1667
1.0996 28.97 1680 1.0986 0.3333 0.1667
1.0996 30.0 1740 1.0986 0.3333 0.1667

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3