Uploaded model
- Developed by: harutoshi
- License: apache-2.0
- Finetuned from model : llm-jp/llm-jp-3-13b
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
Sample Use
以下は、推論を実行するためのサンプルコードです。
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch
from unsloth import FastLanguageModel
from tqdm import tqdm
import json
HF_TOKEN = {あなたのHugging Faceのトークン}
model_name = "harutoshi/llm-jp-3-13b-it"
max_seq_length = 2048
dtype = None
load_in_4bit = True
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = model_name,
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
token = "HF token",
)
FastLanguageModel.for_inference(model)
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
results = []
for dt in tqdm(datasets):
input = dt["input"]
prompt = f"""### 指示\n{input}\n### 回答\n"""
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
with open(f"{new_model_id}_output.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False)
f.write('\n')
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for harutoshi/llm-jp-3-13b-it
Base model
llm-jp/llm-jp-3-13b