metadata
license: mit
tags:
- audio-generation
Dance Diffusion is now available in 🧨 Diffusers.
FP32
# !pip install diffusers[torch] accelerate scipy
from diffusers import DiffusionPipeline
from scipy.io.wavfile import write
model_id = "harmonai/maestro-150k"
pipe = DiffusionPipeline.from_pretrained(model_id)
pipe = pipe.to("cuda")
audios = pipe(audio_length_in_s=4.0).audios
# To save locally
for i, audio in enumerate(audios):
write(f"maestro_test_{i}.wav", pipe.unet.sample_rate, audio.transpose())
# To dislay in google colab
import IPython.display as ipd
for audio in audios:
display(ipd.Audio(audio, rate=pipe.unet.sample_rate))
FP16
Faster at a small loss of quality
# !pip install diffusers[torch] accelerate scipy
from diffusers import DiffusionPipeline
from scipy.io.wavfile import write
import torch
model_id = "harmonai/maestro-150k"
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
audios = pipeline(audio_length_in_s=4.0).audios
# To save locally
for i, audio in enumerate(audios):
write(f"maestro_test_{i}.wav", pipe.unet.sample_rate, audio.transpose())
# To dislay in google colab
import IPython.display as ipd
for audio in audios:
display(ipd.Audio(audio, rate=pipe.unet.sample_rate))