dpo-llama3-8b-sample-rules

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1915
  • Rewards/chosen: 0.1004
  • Rewards/rejected: -1.6031
  • Rewards/accuracies: 1.0
  • Rewards/margins: 1.7035
  • Logps/rejected: -517.5475
  • Logps/chosen: -200.9981
  • Logits/rejected: -1.3936
  • Logits/chosen: -1.2455

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 1
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.4345 0.4444 50 0.3859 0.2018 -0.5860 1.0 0.7877 -415.8305 -190.8644 -1.3991 -1.2723
0.2288 0.8889 100 0.1915 0.1004 -1.6031 1.0 1.7035 -517.5475 -200.9981 -1.3936 -1.2455

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.0
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
5
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for hannahbillo/dpo-llama3-8b-sample-rules

Adapter
(146)
this model