metadata
license: mit
widget:
- text: Some ninja attacked the White House.
example_title: Fake example 1
language:
- en
tags:
- classification
datasets:
- fake-and-real-news-dataset on kaggle
Overview
The model is a roberta-base
fine-tuned on fake-and-real-news-dataset. It has a 100% accuracy on that dataset.
The model takes a news article and predicts if it is true or fake.
The format of the input should be:
<title> TITLE HERE <content> CONTENT HERE <end>
Using this model in your code
To use this model, first download it from the hugginface website:
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("hamzab/roberta-fake-news-classification")
model = AutoModelForSequenceClassification.from_pretrained("hamzab/roberta-fake-news-classification")
Then, make a prediction like follows:
import torch
def predict_fake(title,text):
input_str = "<title>" + title + "<content>" + text + "<end>"
input_ids = tokenizer.encode_plus(input_str, max_length=512, padding="max_length", truncation=True, return_tensors="pt")
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model.to(device)
with torch.no_grad():
output = model(input_ids["input_ids"].to(device), attention_mask=input_ids["attention_mask"].to(device))
return dict(zip(["Fake","Real"], [x.item() for x in list(torch.nn.Softmax()(output.logits)[0])] ))
print(predict_fake(<HEADLINE-HERE>,<CONTENT-HERE>))
You can also use Gradio to test the model on real-time:
import gradio as gr
iface = gr.Interface(fn=predict_fake, inputs=[gr.inputs.Textbox(lines=1,label="headline"),gr.inputs.Textbox(lines=6,label="content")], outputs="label").launch(share=True)