clip-vit-base-patch32-finetuned-eurosat

This model is a fine-tuned version of openai/clip-vit-base-patch32 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0987
  • Accuracy: 0.9716

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4295 0.9979 351 0.2629 0.915
0.4167 1.9986 703 0.2365 0.9222
0.4104 2.9993 1055 0.2205 0.9252
0.3847 4.0 1407 0.1917 0.9338
0.3928 4.9979 1758 0.1803 0.9414
0.311 5.9986 2110 0.1429 0.9524
0.2614 6.9993 2462 0.1137 0.961
0.2579 8.0 2814 0.1102 0.9638
0.1993 8.9979 3165 0.1037 0.9688
0.1921 9.9787 3510 0.0987 0.9716

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
16
Safetensors
Model size
87.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for habibi26/clip-vit-base-patch32-finetuned-eurosat

Finetuned
(56)
this model