Visualize in Weights & Biases

qwen2.5-0.5b-expo-L2EXPO-W1-noES-0.1

This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft-news-IFT on the hZzy/train_pairwise_weighted dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0001
  • Logps: -91.2444
  • Logits: -1.4897
  • Objective: 0.0001
  • Dpo Loss: 0.6779
  • Regularize: 0.4017
  • Ranking Simple: 0.5316
  • Ranking Idealized: 0.6025
  • Ranking Idealized Expo: 0.5233
  • Wo Beta: 16.5542

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 3
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 144
  • total_eval_batch_size: 12
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Logps Logits Objective Dpo Loss Regularize Ranking Simple Ranking Idealized Ranking Idealized Expo Wo Beta
0.0 0.1417 50 0.0001 -90.6039 -1.4633 0.0001 0.6886 0.4141 0.5243 0.6025 0.5233 16.5848
0.0 0.2834 100 0.0001 -91.6434 -1.5468 0.0001 0.6789 0.4080 0.5285 0.6025 0.5233 16.2910
0.0 0.4251 150 0.0001 -92.9071 -1.4692 0.0001 0.6790 0.4111 0.5331 0.6025 0.5233 16.8081
0.0 0.5668 200 0.0001 -94.1014 -1.5088 0.0001 0.6764 0.4073 0.5280 0.6025 0.5233 16.5494
0.0 0.7085 250 0.0001 -92.4359 -1.5576 0.0001 0.6787 0.4095 0.5326 0.6025 0.5233 16.7036
0.0 0.8503 300 0.0001 -91.3976 -1.4988 0.0001 0.6777 0.4058 0.5305 0.6025 0.5233 16.5040
0.0 0.9920 350 0.0001 -92.9950 -1.4920 0.0001 0.6792 0.4098 0.5305 0.6025 0.5233 16.7141
0.0 1.1337 400 0.0001 -90.4269 -1.4778 0.0001 0.6770 0.4009 0.5347 0.6025 0.5233 16.6248
0.0 1.2754 450 0.0001 -92.0877 -1.4925 0.0001 0.6797 0.4066 0.5378 0.6025 0.5233 16.5429
0.0 1.4171 500 0.0001 -89.2338 -1.4505 0.0001 0.6779 0.4022 0.5357 0.6025 0.5233 16.5511
0.0 1.5588 550 0.0001 -90.7047 -1.4772 0.0001 0.6778 0.4019 0.5342 0.6025 0.5233 16.4827
0.0 1.7005 600 0.0001 -90.5059 -1.4760 0.0001 0.6775 0.4020 0.5352 0.6025 0.5233 16.4456
0.0 1.8422 650 0.0001 -90.5418 -1.4723 0.0001 0.6776 0.4024 0.5321 0.6025 0.5233 16.5562
0.0 1.9839 700 0.0001 -90.7432 -1.4788 0.0001 0.6785 0.4029 0.5331 0.6025 0.5233 16.5133
0.0 2.1256 750 0.0001 -91.2051 -1.4918 0.0001 0.6773 0.4014 0.5336 0.6025 0.5233 16.5438
0.0 2.2674 800 0.0001 -91.2034 -1.4901 0.0001 0.6774 0.4009 0.5326 0.6025 0.5233 16.5337
0.0 2.4091 850 0.0001 -91.0159 -1.4877 0.0001 0.6778 0.4018 0.5331 0.6025 0.5233 16.5458
0.0 2.5508 900 0.0001 -91.1343 -1.4912 0.0001 0.6779 0.4018 0.5321 0.6025 0.5233 16.5533
0.0 2.6925 950 0.0001 -91.2303 -1.4921 0.0001 0.6779 0.4018 0.5316 0.6025 0.5233 16.5485
0.0 2.8342 1000 0.0001 -91.2246 -1.4900 0.0001 0.6779 0.4017 0.5316 0.6025 0.5233 16.5531
0.0 2.9759 1050 0.0001 -91.2444 -1.4897 0.0001 0.6779 0.4017 0.5316 0.6025 0.5233 16.5542

Framework versions

  • Transformers 4.42.0
  • Pytorch 2.3.0+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
10
Safetensors
Model size
494M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model's library.

Model tree for hZzy/qwen2.5-0.5b-expo-L2EXPO-W1-noES-0.1

Finetuned
(74)
this model

Dataset used to train hZzy/qwen2.5-0.5b-expo-L2EXPO-W1-noES-0.1